
Itoyori: Reconciling Global Address Space and
Global Fork-Join Task Parallelism

SC23勉強会

Shumpei Shiina, Kenjiro Taura

The University of Tokyo

2023.12.09

自己紹介

名前: 椎名峻平（しいなしゅんぺい）

所属: 東京大学大学院情報理工学系研究科田浦研究室博士課程 3年

研究:タスク並列のための処理系、スレッド実装、PGASなど

SC歴:

SC19: 論文 “Almost Deterministic Work Stealing”発表

SC23: 2回目の発表 &参加、コロナ初感染

1 / 20

What We Really Want to Reconcile: Productivity and Performance in HPC

Low-level programming models
that can achieve
the highest performance

Two different programming models
for shared/distributed memory
(MPI+Xmodel)

X = Pthreads, OpenMP, TBB, ...

Require much effort by HPC experts

Lower productivity

High-level programming models
that can shortly achieve
sufficiently good performance

Desired properties:

A single, unified programming model
for shared/distributed memory

General enough to easily express
dynamic and irregular parallelism

More is needed on this front

2 / 20

Fork-Join Task Parallelism on Distributed Memory?

Parallel execution based on dynamically forked tasks

Well suited for dynamic and irregular applications

Programmers can focus on logical parallelism without
considering hardware details (processor-obliviousness)

Popular shared-memory programming models for
fork-join task parallelism:

(oneTBB)

OpenMP
(#pragma omp task)

... any systems for
distributed memory?

3 / 20

Itoyori: A Distributed Task-Parallel Runtime System

A C++17 library for fork-join task parallelism on distributed memory

It depends only on MPI (capable ofMPI-3 RMA)→ Good Portability

“Itoyori” is the Japanese name of the fish “Threadfin Breams”

Shared-memory-like simple global-view programming

Yet highly scalable and efficient

GitHub:

https://github.com/itoyori/itoyori 4 / 20

https://github.com/itoyori/itoyori
https://github.com/itoyori/itoyori

What Itoyori Offers

Work-stealing scheduler for fine-grained, global fork-join task parallelism

Tasks (user-level threads) can be scheduled across different nodes
Based on the uni-address scheme for inter-node dynamic thread migration
– [Akiyama & Taura, HPDC ’15], scalability to > 100k cores [Shiina & Taura, Cluster ’22]

Global address space, a view of shared memory over distributed memory

More specifically, Partitioned Global Address Space (PGAS)

High-level C++ parallel STL-like interfaces

e.g., transform(), reduce()

They automatically call fork-join and global memory access APIs internally

5 / 20

What Itoyori Offers

Work-stealing scheduler for fine-grained, global fork-join task parallelism

Tasks (user-level threads) can be scheduled across different nodes
Based on the uni-address scheme for inter-node dynamic thread migration
– [Akiyama & Taura, HPDC ’15], scalability to > 100k cores [Shiina & Taura, Cluster ’22]

Global address space, a view of shared memory over distributed memory

More specifically, Partitioned Global Address Space (PGAS)

High-level C++ parallel STL-like interfaces

e.g., transform(), reduce()

They automatically call fork-join and global memory access APIs internally

5 / 20

What Itoyori Offers

Work-stealing scheduler for fine-grained, global fork-join task parallelism

Tasks (user-level threads) can be scheduled across different nodes
Based on the uni-address scheme for inter-node dynamic thread migration
– [Akiyama & Taura, HPDC ’15], scalability to > 100k cores [Shiina & Taura, Cluster ’22]

Global address space, a view of shared memory over distributed memory

More specifically, Partitioned Global Address Space (PGAS)

High-level C++ parallel STL-like interfaces

e.g., transform(), reduce()

They automatically call fork-join and global memory access APIs internally

5 / 20

What Itoyori Does NOT Offer

Explicit point-to-point communication

Communication is implicitly issued when accessing the global address space

Distributed shared memory (DSM) that allows transparent global memory access

Explicit API calls are required for global memory access in Itoyori (PGAS)

APIs to distinguish between inter- and intra-node processes

No need for two-level parallelization (e.g., MPI+X)

Complicated APIs for task-parallel execution

Special compilers other than ordinary C++17 compilers

6 / 20

What Itoyori Does NOT Offer

Explicit point-to-point communication

Communication is implicitly issued when accessing the global address space

Distributed shared memory (DSM) that allows transparent global memory access

Explicit API calls are required for global memory access in Itoyori (PGAS)

APIs to distinguish between inter- and intra-node processes

No need for two-level parallelization (e.g., MPI+X)

Complicated APIs for task-parallel execution

Special compilers other than ordinary C++17 compilers

6 / 20

What Itoyori Does NOT Offer

Explicit point-to-point communication

Communication is implicitly issued when accessing the global address space

Distributed shared memory (DSM) that allows transparent global memory access

Explicit API calls are required for global memory access in Itoyori (PGAS)

APIs to distinguish between inter- and intra-node processes

No need for two-level parallelization (e.g., MPI+X)

Complicated APIs for task-parallel execution

Special compilers other than ordinary C++17 compilers

6 / 20

What Itoyori Does NOT Offer

Explicit point-to-point communication

Communication is implicitly issued when accessing the global address space

Distributed shared memory (DSM) that allows transparent global memory access

Explicit API calls are required for global memory access in Itoyori (PGAS)

APIs to distinguish between inter- and intra-node processes

No need for two-level parallelization (e.g., MPI+X)

Complicated APIs for task-parallel execution

Special compilers other than ordinary C++17 compilers

6 / 20

What Itoyori Does NOT Offer

Explicit point-to-point communication

Communication is implicitly issued when accessing the global address space

Distributed shared memory (DSM) that allows transparent global memory access

Explicit API calls are required for global memory access in Itoyori (PGAS)

APIs to distinguish between inter- and intra-node processes

No need for two-level parallelization (e.g., MPI+X)

Complicated APIs for task-parallel execution

Special compilers other than ordinary C++17 compilers

6 / 20

Key Contributions of Our Research

Proposing Itoyori, a distributed fork-join task-parallel runtime system

Itoyori reconciles PGAS and fine-grained fork-join task parallelism by introducing a
software cache for global memory access

Demonstrating high productivity and performance of Itoyori through a real-world
application ExaFMM

7.5× speedup when scaled from a single node to 12 nodes

comparable performance to a hand-optimized MPI implementation

Itoyori is expected to strike a good balance
between productivity and performance!

7 / 20

Outline

Itoyori’s Programming Model

Software Caching for Global Memory Access

Evaluation

Summary

Outline

Itoyori’s Programming Model

Software Caching for Global Memory Access

Evaluation

Summary

Itoyori’s Programming Model▷ An Example of Parallel Merge Sort

Sequential C++ code:
void msort(int* a, size_t n) {

if (n < CUTOFF) {

sort_small(a, n);

} else {

msort(a , n/2);

msort(a + n/2, n/2);

merge(a, n, n/2);

}

}

Divide the input array into two sub-arrays and
sort them recursively (divide-and-conquer)

Merge the two sorted arrays

Switch to a fast sequential algorithm for small arrays

Parallel tasks can be dynamically forked and joined,
even recursively (Nested fork-join parallelism)

In order to access global memory, programmers
need to call checkout/checkin API

8 / 20

Itoyori’s Programming Model▷ An Example of Parallel Merge Sort

Sequential C++ code:
void msort(int* a, size_t n) {

if (n < CUTOFF) {

sort_small(a, n);

} else {

msort(a , n/2);

msort(a + n/2, n/2);

merge(a, n, n/2);

}

}

Divide the input array into two sub-arrays and
sort them recursively (divide-and-conquer)

Merge the two sorted arrays

Switch to a fast sequential algorithm for small arrays

Parallel tasks can be dynamically forked and joined,
even recursively (Nested fork-join parallelism)

In order to access global memory, programmers
need to call checkout/checkin API

8 / 20

Itoyori’s Programming Model▷ An Example of Parallel Merge Sort

Sequential C++ code:
void msort(int* a, size_t n) {

if (n < CUTOFF) {

sort_small(a, n);

} else {

msort(a , n/2);

msort(a + n/2, n/2);

merge(a, n, n/2);

}

}

Divide the input array into two sub-arrays and
sort them recursively (divide-and-conquer)

Merge the two sorted arrays

Switch to a fast sequential algorithm for small arrays

Parallel tasks can be dynamically forked and joined,
even recursively (Nested fork-join parallelism)

In order to access global memory, programmers
need to call checkout/checkin API

8 / 20

Itoyori’s Programming Model▷ An Example of Parallel Merge Sort

Sequential C++ code:
void msort(int* a, size_t n) {

if (n < CUTOFF) {

sort_small(a, n);

} else {

msort(a , n/2);

msort(a + n/2, n/2);

merge(a, n, n/2);

}

}

Divide the input array into two sub-arrays and
sort them recursively (divide-and-conquer)

Merge the two sorted arrays

Switch to a fast sequential algorithm for small arrays

Parallel tasks can be dynamically forked and joined,
even recursively (Nested fork-join parallelism)

In order to access global memory, programmers
need to call checkout/checkin API

8 / 20

Itoyori’s Programming Model▷ An Example of Parallel Merge Sort

Sequential C++ code:
void msort(int* a, size_t n) {

if (n < CUTOFF) {

sort_small(a, n);

} else {

msort(a , n/2);

msort(a + n/2, n/2);

merge(a, n, n/2);

}

}

Distributed parallel code in Itoyori:
void msort(int* a, size_t n) {

if (n < CUTOFF) {

checkout(a, n, mode::read_write);

sort_small(a, n);

checkin(a, n, mode::read_write);

} else {

thread th = fork([=]{ msort(a, n/2); });

msort(a + n/2, n/2);

th.join();

merge(a, n, n/2);

}

}

Divide the input array into two sub-arrays and
sort them recursively (divide-and-conquer)

Merge the two sorted arrays

Switch to a fast sequential algorithm for small arrays

Parallel tasks can be dynamically forked and joined,
even recursively (Nested fork-join parallelism)

In order to access global memory, programmers
need to call checkout/checkin API

8 / 20

Itoyori’s Programming Model▷ An Example of Parallel Merge Sort

Sequential C++ code:
void msort(int* a, size_t n) {

if (n < CUTOFF) {

sort_small(a, n);

} else {

msort(a , n/2);

msort(a + n/2, n/2);

merge(a, n, n/2);

}

}

Distributed parallel code in Itoyori:
void msort(int* a, size_t n) {

if (n < CUTOFF) {

checkout(a, n, mode::read_write);

sort_small(a, n);

checkin(a, n, mode::read_write);

} else {

thread th = fork([=]{ msort(a, n/2); });

msort(a + n/2, n/2);

th.join();

merge(a, n, n/2);

}

}

Divide the input array into two sub-arrays and
sort them recursively (divide-and-conquer)

Merge the two sorted arrays

Switch to a fast sequential algorithm for small arrays

Parallel tasks can be dynamically forked and joined,
even recursively (Nested fork-join parallelism)

In order to access global memory, programmers
need to call checkout/checkin API

8 / 20

Itoyori’s Programming Model▷ An Example of Parallel Merge Sort

Sequential C++ code:
void msort(int* a, size_t n) {

if (n < CUTOFF) {

sort_small(a, n);

} else {

msort(a , n/2);

msort(a + n/2, n/2);

merge(a, n, n/2);

}

}

Distributed parallel code in Itoyori:
void msort(int* a, size_t n) {

if (n < CUTOFF) {

checkout(a, n, mode::read_write);

sort_small(a, n);

checkin(a, n, mode::read_write);

} else {

thread th = fork([=]{ msort(a, n/2); });

msort(a + n/2, n/2);

th.join();

merge(a, n, n/2);

}

}

Divide the input array into two sub-arrays and
sort them recursively (divide-and-conquer)

Merge the two sorted arrays

Switch to a fast sequential algorithm for small arrays

Parallel tasks can be dynamically forked and joined,
even recursively (Nested fork-join parallelism)

In order to access global memory, programmers
need to call checkout/checkin API

8 / 20

Checkout/Checkin APIs

void msort(int* a, size_t n) {

if (n < CUTOFF) {

checkout(a, n, mode::read_write);

sort_small(a, n);

checkin(a, n, mode::read_write);

} else {

thread th = fork([=]{ msort(a, n/2); });

msort(a + n/2, n/2);

th.join();

merge(a, n, n/2);

}

}

Raw virtual addresses can be used for
global memory access

Requests local access to global
memory region [0, 0 + =)

Specifies the access mode
(read, read_write, or write)

If read or read_write, the latest data
may be fetched from owners

Claims the completion of memory access

Passes the same arguments as the
corresponding checkout call

If read_write or write, this region is
considered modified

9 / 20

Checkout/Checkin APIs

void msort(int* a, size_t n) {

if (n < CUTOFF) {

checkout(a, n, mode::read_write);

sort_small(a, n);

checkin(a, n, mode::read_write);

} else {

thread th = fork([=]{ msort(a, n/2); });

msort(a + n/2, n/2);

th.join();

merge(a, n, n/2);

}

}

Raw virtual addresses can be used for
global memory access

Requests local access to global
memory region [0, 0 + =)

Specifies the access mode
(read, read_write, or write)

If read or read_write, the latest data
may be fetched from owners

Claims the completion of memory access

Passes the same arguments as the
corresponding checkout call

If read_write or write, this region is
considered modified

9 / 20

Checkout/Checkin APIs

void msort(int* a, size_t n) {

if (n < CUTOFF) {

checkout(a, n, mode::read_write);

sort_small(a, n);

checkin(a, n, mode::read_write);

} else {

thread th = fork([=]{ msort(a, n/2); });

msort(a + n/2, n/2);

th.join();

merge(a, n, n/2);

}

}

Raw virtual addresses can be used for
global memory access

Requests local access to global
memory region [0, 0 + =)

Specifies the access mode
(read, read_write, or write)

If read or read_write, the latest data
may be fetched from owners

Claims the completion of memory access

Passes the same arguments as the
corresponding checkout call

If read_write or write, this region is
considered modified

9 / 20

Outline

Itoyori’s Programming Model

Software Caching for Global Memory Access

Evaluation

Summary

Global Address Space + Global Task Parallelism = ?

Partitioned Global Address Space
(PGAS) model:

Programmers optimize data
movement by explicitly distinguishing
between global and local data

We want to aggregate communication
for different tasks working on the
same data

Inter-node dynamic load balancing
(global task parallelism):

The runtime system can dynamically
move tasks across nodes for load
balancing

Requiring each task independently
issue communication for its own data

If we naively combine these two...
⇨ Redundant, fine-grained communication

10 / 20

Redundant, Fine-Grained Communication in Parallel Merge Sort

void msort(int* a, size_t n) {

if (n < CUTOFF) {

checkout(a, n, mode::read_write);

sort_small(a, n);

checkin(a, n, mode::read_write);

} else {

thread th = fork([=]{ msort(a, n/2); });

msort(a + n/2, n/2);

th.join();

merge(a, n, n/2);

}

}

At merge, we want to reuse remote data fetched in the
previous sort functions

However, it is difficult for programmers to do so
because these tasksmay run on different nodes

As a result, global memory accesses
are issued for each task

More fine-grained tasks
⇨More fine-grained communication

11 / 20

Redundant, Fine-Grained Communication in Parallel Merge Sort

void msort(int* a, size_t n) {

if (n < CUTOFF) {

checkout(a, n, mode::read_write);

sort_small(a, n);

checkin(a, n, mode::read_write);

} else {

thread th = fork([=]{ msort(a, n/2); });

msort(a + n/2, n/2);

th.join();

merge(a, n, n/2);

}

}

At merge, we want to reuse remote data fetched in the
previous sort functions

However, it is difficult for programmers to do so
because these tasksmay run on different nodes

As a result, global memory accesses
are issued for each task

More fine-grained tasks
⇨More fine-grained communication

11 / 20

Performance of Naive Combination of PGAS and Dynamic Load Balancing

100 1000 10k 100k
1

10

Cutoff count (# of elements)

Ex
ec

ut
io

n
Ti

m
e

(s
)

Recursive parallel merge sort

called Cilksort

Ran on 12 nodes (576 cores)

More fine-grained tasks
⇨More fine-grained communication
⇨Worse performance

12 / 20

Reconciling Them by Software Caching!

By introducing a software cache, the runtime system, rather than programmers,
can aggregate communication for tasks that are scheduled on the same node

Exploit spatial locality by fetching larger data than requested

Exploit temporal locality by reusing fetched data across different tasks

We designed checkout/checkin APIs for efficient software caching

Avoid unnecessary copy overhead that would occur in traditional PGAS APIs (GET/PUT)

See our paper for more details!

13 / 20

Performance Improvement by Software Caching

100 1000 10k 100k
1

10

No Cache

Itoyori (with Cache)

Cutoff count (# of elements)

Ex
ec

ut
io

n
Ti

m
e

(s
)

By software caching, Itoyori becomes
more robust to fine-grained parallelism

14 / 20

Virtual Memory Mappings for Software Cache

Process 1 Process 2 Process 3 Process 4

Process 1

Cache blocks

Global view
(virtual address space)

Memory distribution

Home blocks

Global memory consists ofmemory blocks of fixed size

Home blocks are physical memory blocks owned by each process

Home blocks are directly mapped to the global view

Checkout/Checkin

Cache blocks are mapped to the global view on demandRDMA

Checkout/Checkin

Cache blocks can be dynamically evicted
from the global view

15 / 20

Virtual Memory Mappings for Software Cache

Process 1 Process 2 Process 3 Process 4

Process 1

Cache blocks

Global view
(virtual address space)

Memory distribution

Home blocks

Global memory consists ofmemory blocks of fixed size

Home blocks are physical memory blocks owned by each process

Home blocks are directly mapped to the global view

Checkout/Checkin

Cache blocks are mapped to the global view on demandRDMA

Checkout/Checkin

Cache blocks can be dynamically evicted
from the global view

15 / 20

Virtual Memory Mappings for Software Cache

Process 1 Process 2 Process 3 Process 4

Process 1

Cache blocks

Global view
(virtual address space)

Memory distribution

Home blocks

Global memory consists ofmemory blocks of fixed size

Home blocks are physical memory blocks owned by each process

Home blocks are directly mapped to the global view

Checkout/Checkin

Cache blocks are mapped to the global view on demandRDMA

Checkout/Checkin

Cache blocks can be dynamically evicted
from the global view

15 / 20

Virtual Memory Mappings for Software Cache

Process 1 Process 2 Process 3 Process 4

Process 1

Cache blocks

Global view
(virtual address space)

Memory distribution

Home blocks

Global memory consists ofmemory blocks of fixed size

Home blocks are physical memory blocks owned by each process

Home blocks are directly mapped to the global view

Checkout/Checkin

Cache blocks are mapped to the global view on demandRDMA

Checkout/Checkin

Cache blocks can be dynamically evicted
from the global view

15 / 20

Virtual Memory Mappings for Software Cache

Process 1 Process 2 Process 3 Process 4

Process 1

Cache blocks

Global view
(virtual address space)

Memory distribution

Home blocks

Global memory consists ofmemory blocks of fixed size

Home blocks are physical memory blocks owned by each process

Home blocks are directly mapped to the global view

Checkout/Checkin

Cache blocks are mapped to the global view on demand

RDMA

Checkout/Checkin

Cache blocks can be dynamically evicted
from the global view

15 / 20

Virtual Memory Mappings for Software Cache

Process 1 Process 2 Process 3 Process 4

Process 1

Cache blocks

Global view
(virtual address space)

Memory distribution

Home blocks

Global memory consists ofmemory blocks of fixed size

Home blocks are physical memory blocks owned by each process

Home blocks are directly mapped to the global view

Checkout/Checkin

Cache blocks are mapped to the global view on demand

RDMA

Checkout/Checkin

Cache blocks can be dynamically evicted
from the global view

15 / 20

Virtual Memory Mappings for Software Cache

Process 1 Process 2 Process 3 Process 4

Process 1

Cache blocks

Global view
(virtual address space)

Memory distribution

Home blocks

Global memory consists ofmemory blocks of fixed size

Home blocks are physical memory blocks owned by each process

Home blocks are directly mapped to the global view

Checkout/Checkin

Cache blocks are mapped to the global view on demandRDMA

Checkout/Checkin

Cache blocks can be dynamically evicted
from the global view

15 / 20

Virtual Memory Mappings for Software Cache

Process 1 Process 2 Process 3 Process 4

Process 1

Cache blocks

Global view
(virtual address space)

Memory distribution

Home blocks

Global memory consists ofmemory blocks of fixed size

Home blocks are physical memory blocks owned by each process

Home blocks are directly mapped to the global view

Checkout/Checkin

Cache blocks are mapped to the global view on demandRDMA

Checkout/Checkin

Cache blocks can be dynamically evicted
from the global view

15 / 20

Virtual Memory Mappings for Software Cache

Process 1 Process 2 Process 3 Process 4

Process 1

Cache blocks

Global view
(virtual address space)

Memory distribution

Home blocks

Global memory consists ofmemory blocks of fixed size

Home blocks are physical memory blocks owned by each process

Home blocks are directly mapped to the global view

Checkout/Checkin

Cache blocks are mapped to the global view on demandRDMA

Checkout/Checkin

Cache blocks can be dynamically evicted
from the global view

15 / 20

Virtual Memory Mappings for Software Cache

Process 1 Process 2 Process 3 Process 4

Process 1

Cache blocks

Global view
(virtual address space)

Memory distribution

Home blocks

Global memory consists ofmemory blocks of fixed size

Home blocks are physical memory blocks owned by each process

Home blocks are directly mapped to the global view

Checkout/Checkin

Cache blocks are mapped to the global view on demandRDMA

Checkout/Checkin

Cache blocks can be dynamically evicted
from the global view

15 / 20

Memory Consistency and Cache Coherence

Itoyori employs a relaxed memory consistency model that assumes that the
program is data-race-free

No data race is allowed in Itoyori programs

Caches can be invalidated and written back to their home at fork-join points

but only when work-stealing events happen

RDMA-based efficient cache management for work stealing

Please check out the paper for more details!

16 / 20

Outline

Itoyori’s Programming Model

Software Caching for Global Memory Access

Evaluation

Summary

Performance Evaluation of Itoyori

We evaluated Itoyori with three fork-join applications

Cilksort, UTS-Mem, and ExaFMM

In this talk, we show the result for ExaFMM only

Experimental environment:

Wisteria/BDEC-01 Odyssey supercomputer at The University of Tokyo

Similar configuration to Fugaku Supercomputer

CPU: Fujitsu A64FX (48 cores/node)

Memory: HBM2 (32 GiB/node)

Network: Fujitsu MPI over Tofu Interconnect D

17 / 20

ExaFMM (High-Performance FMM Library) [Yokota+, CPC ’13]

ExaFMM approximates interactions between
far-enough particles by using a global tree

Highly dynamic and irregular parallelism

We ported a shared-memory fork-join
task-parallel implementation of ExaFMM
[Taura+, ScalA ’12] to Itoyori

The overall parallel algorithm was not
changed from the original shared-memory
code, except for microscopic changes

If we were to use MPI, we would have to redesign
the parallel algorithm itself

Tree-based computation in ExaFMM
from [Yokota+, CPC ’13]

18 / 20

ExaFMM▷ Strong Scaling

100 1000
10

100

1000

No Cache

Itoyori (with Cache)

MPI

of cores

Ex
ec

ut
io

n
ti

m
e

(s
)

Linear speedup

(vs. serial)

10M bodies

Software caching improved
performance by up to 6.0×

7.5× speedup on 12 nodes (vs. 1 node)6.0×

An existing MPI implementation of ExaFMM

Hybrid of MPI and fork-join task parallelism

Inter-node: static load balancing using MPI

Intra-node: task parallelism (the same)

Itoyori performs competitively to the
hand-optimized MPI version, while main-
taining high productivity

19 / 20

ExaFMM▷ Strong Scaling

100 1000
10

100

1000

No Cache

Itoyori (with Cache)

MPI

of cores

Ex
ec

ut
io

n
ti

m
e

(s
)

Linear speedup

(vs. serial)

10M bodies

Software caching improved
performance by up to 6.0×

7.5× speedup on 12 nodes (vs. 1 node)6.0×

An existing MPI implementation of ExaFMM

Hybrid of MPI and fork-join task parallelism

Inter-node: static load balancing using MPI

Intra-node: task parallelism (the same)

Itoyori performs competitively to the
hand-optimized MPI version, while main-
taining high productivity

19 / 20

ExaFMM▷ Strong Scaling

100 1000
10

100

1000

No Cache

Itoyori (with Cache)

MPI

of cores

Ex
ec

ut
io

n
ti

m
e

(s
)

Linear speedup

(vs. serial)

10M bodies

Software caching improved
performance by up to 6.0×

7.5× speedup on 12 nodes (vs. 1 node)6.0×

An existing MPI implementation of ExaFMM

Hybrid of MPI and fork-join task parallelism

Inter-node: static load balancing using MPI

Intra-node: task parallelism (the same)

Itoyori performs competitively to the
hand-optimized MPI version, while main-
taining high productivity

19 / 20

Outline

Itoyori’s Programming Model

Software Caching for Global Memory Access

Evaluation

Summary

Summary

Itoyori is a C++ global-view programming framework for fork-join task parallelism

Software caching is a key to scale fork-join parallelism to distributed memory

We designed efficient software cache with checkout/checkin APIs

Our experiments suggested that Itoyori could achieve a good balance between
productivity and performance

GitHub:

https://github.com/itoyori/itoyori 20 / 20

https://github.com/itoyori/itoyori
https://github.com/itoyori/itoyori

	Introduction
	Itoyori's Programming Model
	Software Caching for Global Memory Access
	Evaluation
	Summary

