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What We Really Want to Reconcile: Productivity and Performance in HPC

Low-level programming models High-level programming models
that can achieve that can shortly achieve
the highest performance sufficiently good performance
e Two different programming models e Desired properties:
for shared/distributed memory

o Asingle, unified programming model

(MPI+X model) for shared/distributed memory

© X =Pthreads, OpenMP, TBB, .. o General enough to easily express
® Require much effort by HPC experts dynamic and irregular parallelism

o Lower productivity e More is needed on this front
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Fork-Join Task Parallelism on Distributed Memory?

e Parallel execution based on dynamically forked tasks
e Well suited for dynamic and irregular applications

® Programmers can focus on logical parallelism without
considering hardware details (processor-obliviousness)

e Popular shared-memory programming models for
fork-join task parallelism:

fasals,

Opeeo)Cilk B OpenMP

(#pragma omp task)
(oneTBB)

... any systems for
distributed memory?
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Itoyori: A Distributed Task-Parallel Runtime System

e A C++17 library for fork-join task parallelism on distributed memory
o It depends only on MPI (capable of MPI-3 RMA) = Good Portability

e “Itoyori” is the Japanese name of the fish “Threadfin Breams”
e Shared-memory-like simple global-view programming

e Yet highly scalable and efficient

o E el
Itoyor S
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https://github.com/itoyori/itoyori
https://github.com/itoyori/itoyori

What Itoyori Offers

e Work-stealing scheduler for fine-grained, global fork-join task parallelism

o Tasks (user-level threads) can be scheduled across different nodes
o Based on the uni-address scheme for inter-node dynamic thread migration
— [Akiyama & Taura, HPDC ’15], scalability to > 100k cores [Shiina & Taura, Cluster '22]
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What Itoyori Offers

e Work-stealing scheduler for fine-grained, global fork-join task parallelism

o Tasks (user-level threads) can be scheduled across different nodes
o Based on the uni-address scheme for inter-node dynamic thread migration
— [Akiyama & Taura, HPDC ’15], scalability to > 100k cores [Shiina & Taura, Cluster '22]

e Global address space, a view of shared memory over distributed memory

O More specifically, Partitioned Global Address Space (PGAS)

® High-level C++ parallel STL-like interfaces

o e.g., transform(), reduce()

o They automatically call fork-join and global memory access APIs internally
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What Itoyori Does NOT Offer

e Explicit point-to-point communication

o Communication is implicitly issued when accessing the global address space
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What Itoyori Does NOT Offer

Explicit point-to-point communication

o Communication is implicitly issued when accessing the global address space

Distributed shared memory (DSM) that allows transparent global memory access

o Explicit API calls are required for global memory access in Itoyori (PGAS)

APIs to distinguish between inter- and intra-node processes

o No need for two-level parallelization (e.g., MPI+X)

Complicated APIs for task-parallel execution

Special compilers other than ordinary C++17 compilers
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Key Contributions of Our Research

® Proposing Itoyori, a distributed fork-join task-parallel runtime system
o Itoyori reconciles PGAS and fine-grained fork-join task parallelism by introducing a

software cache for global memory access

e Demonstrating high productivity and performance of Itoyori through a real-world
application ExaFMM

o 7.5x speedup when scaled from a single node to 12 nodes

o comparable performance to a hand-optimized MPI implementation

Itoyori is expected to strike a good balance
between productivity and performance!
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Itoyori’s Programming Model > An Example of Parallel Merge Sort

Sequential C++ code:
void msort(intx a, size_t n) {
if (n < CUTOFF) {

sort_small(a, n);

} else {
msort(a , n/2);
msort(a + n/2, n/2);

merge(a, n, n/2);

3
b
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Itoyori’s Programming Model > An Example of Parallel Merge Sort

Sequential C++ code:

void msort(intx a, size_t n) {
if (n < CUTOFF) {

sort_small(a, n); <[ Switch to a fast sequential algorithm for small arrays J

} else {
msort(a , n/2); Divide the input array into two sub-arrays and
msort(a + n/2, n/2); sort them recursively (divide-and-conquer)

merge(a, n, n/2);

3
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Itoyori’s Programming Model > An Example of Parallel Merge Sort

Sequential C++ code: Distributed parallel code in Itoyori:
void msort(intx a, size_t n) { void msort(intx a, size_t n) {
if (n < CUTOFF) { if (n < CUTOFF) {
checkout(a, n, mode::read_write);
sort_small(a, n); sort_small(a, n);
checkin(a, n, mode::read_write);
} else { } else {
msort(a , n/2); thread th = fork([=]{ msort(a, n/2); });
msort(a + n/2, n/2); msort(a + n/2, n/2);
th.join();
merge(a, n, n/2); merge(a, n, n/2);
3 }
} }
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Itoyori’s Programming Model > An Example of Parallel Merge Sort

Sequential C++ code: Distributed parallel code in Itoyori:
void msort(intx a, size_t n) { void msort(intx a, size_t n) {
if (n < CUTOFF) { if (n < CUTOFF) {
checkout(a, n, mode::read_write);
sort_small(a, n); sort_small(a, n);
checkin(a, n, mode::read_write);
} else { } else {
msort(a , n/2); thread th = fork([=]{ msort(a, n/2); });
msort(a + n/2, n/2); msort(a + n/2, n/2);
th.join();
merge(a, n, n/2); merge(a, n, n/2);
3 }
}

Parallel tasks can be dynamically forked and joined,

even recursively (Nested fork-join parallelism)
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Itoyori’s Programming Model > An Example of Parallel Merge Sort

In order to access global memory, programmers

void msort(intx a, size_t n) { void msort(intx a, size_t n) {

’ Parallel tasks can be dynamically forked and joined,

even recursively (Nested fork-join parallelism)

if (n < CUTOFF) { if (n < CUTOFF) {
checkout(a, n, mode::read_write);
sort_small(a, n); sort_small(a, n);
checkin(a, n, mode::read_write);
} else { } else {
msort(a , n/2); thread th = fork([=]{ msort(a, n/2); });
msort(a + n/2, n/2); msort(a + n/2, n/2);
th.join();
merge(a, n, n/2); merge(a, n, n/2);
3 }
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Checkout/Checkin APIs

Raw virtual addresses can be used for
global memory access

e

void msort(intx a, size_t n) {
if (n < CUTOFF) {
checkout(a, n, mode::read_write);
sort_small(a, n);

checkin(a, n, mode::read_write);
} else {
thread th = fork([=]{ msort(a, n/2); });
msort(a + n/2, n/2);
th.join();
merge(a, n, n/2);
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Checkout/Checkin APIs

Raw virtual addresses can be used for
global memory access

e

void msort(intx a, size_t n) {
if (n < CUTOFF) {
checkout(a, n, mode::read_write);

sort_small(a, n);
checkin(a, n, mode::read_write); \

® Requests local access to global
memory region [a, a + n)

e Specifies the access mode
(read, read_write, orwrite)

o If read or read_write, the latest data
may be fetched from owners

} else {
thread th = fork([=]{ msort(a, n/2); });
msort(a + n/2, n/2);
th.join();
merge(a, n, n/2);
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Checkout/Checkin APIs

Raw virtual addresses can be used for
global memory access

® Requests local access to global
memory region [a, a + n)

e

void msort(intx a, size_t n) {
if (n < CUTOFF) {
checkout(a, n, mode::read_write);
sort_small(a, n);
checkin(a, n, mode::read_write);

e Specifies the access mode
(read, read_write, orwrite)

o If read or read_write, the latest data
may be fetched from owners

| J

} else { \(
thread th = fork([=]{ msort(a, n/2);

msort(a + n/2, n/2);
th.join();
merge(a, n, n/2);

e Claims the completion of memory access

e Passes the same arguments as the
corresponding checkout call

o If read_write orwrite, this regionis
considered modified

O

N
C
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Software Caching for Global Memory Access



Global Address Space + Global Task Parallelism =?

Partitioned Global Address Space Inter-node dynamic load balancing
(PGAS) model: (global task parallelism):
® Programmers optimize data ® The runtime system can dynamically
movement by explicitly distinguishing move tasks across nodes for load
between global and local data balancing

e We want to aggregate communication ® Requiring each task independently
for different tasks working on the issue communication for its own data
same data

If we naively combine these two...
= Redundant, fine-grained communication
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Redundant, Fine-Grained Communication in Parallel Merge Sort

void msort(intx a, size_t n) {

if (n < CUTOFF) {
checkout(a, n, mode::read_write);
sort_small(a, n);
checkin(a, n, mode::read_write);

} else {
thread th = fork([=1{ msort(a, n/2); });
msort(a + n/2, n/2);
th.join();

merge(a, n, n/2);
} previous sort functions

<
e At merge, we want to reuse remote data fetched in the

e However, it is difficult for programmers to do so
because these tasks may run on different nodes

J
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Redundant, Fine-Grained Communication in Parallel Merge Sort

[ J
void msort(intx a, sizet n) { As a result, global memory accesses
if (n < CUTOFF) { are issued for each task

checkout(a, n, mode::read_write); e———"
sort_small(a, n);
checkin(a, n, mode::read_write);

} else {
thread th = fork([=1{ msort(a, n/2); });
msort(a + n/2, n/2);
th.join();

merge(a, n, n/2);
} previous sort functions

e More fine-grained tasks

= More fine-grained communication
. J

<
e At merge, we want to reuse remote data fetched in the

e However, it is difficult for programmers to do so
because these tasks may run on different nodes

J
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Performance of Naive Combination of PGAS and Dynamic Load Balancing

.
[y
Y

e Recursive parallel merge sort

—_
o
1

o called Cilksort

T T T T T
.’
L.
L.
L.
-
o®
.
.
.
.
.

e Ranon 12 nodes (576 cores)

@ ® More fine-grained tasks
I @ = More fine-grained communication
SRS = Worse performance

‘l IIIIII= 1 Illllll= 1 IIIIIII= 1 Illllll=

100 1000 10k 100k
Cutoff count (# of elements)

Execution Time (s)
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Reconciling Them by Software Caching!

e By introducing a software cache, the runtime system, rather than programmers,
can aggregate communication for tasks that are scheduled on the same node

e Exploit spatial locality by fetching larger data than requested

e Exploit temporal locality by reusing fetched data across different tasks

e We designed checkout/checkin APIs for efficient software caching

o Avoid unnecessary copy overhead that would occur in traditional PGAS APIs (GET/PUT)

O See our paper for more details!
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Performance Improvement by Software Caching

He) -=4£)--- No Cache
I —A— Itoyori (with Cache)

—_
o
1

.
Y
[y
[y
‘@
.
.
.
S
.

e By software caching, Itoyori becomes
more robust to fine-grained parallelism

Execution Time (s)
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100 1000 10k 100k
Cutoff count (# of elements)
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Virtual Memory Mappings for Software Cache
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Virtual Memory Mappings for Software Cache

Proces Global view
—
( t'l"'am R— M—I (virtual Jddress space)

't / | y
/ / / A y

e Global memory consists of memory blocks of fixed size

e Home blocks are physical memory blocks owned by each process S

(Process 1 } Process 2 Process 3 Process 4
(I — I — LT 1
Home blocks .

~
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~
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Virtual Memory Mappings for Software Cache

p
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Virtual Memory Mappings for Software Cache

I Checkout/Checkin
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Virtual Memory Mappings for Software Cache

\J_I_, Checkout/Checkin

Proces Global view
_
iﬁl-'-aﬂ S (virtual address space)

] Cache blocks

[ Cache blocks are mapped to the global view on demand
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Virtual Memory Mappings for Software Cache
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Virtual Memory Mappings for Software Cache
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Virtual Memory Mappings for Software Cache

I Checkout/Checkin
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Virtual Memory Mappings for Software Cache
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Virtual Memory Mappings for Software Cache
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Memory Consistency and Cache Coherence

e ITtoyori employs a relaxed memory consistency model that assumes that the
program is data-race-free

o No data race is allowed in Itoyori programs

e Caches can be invalidated and written back to their home at fork-join points

o but only when work-stealing events happen
e RDMA-based efficient cache management for work stealing

e Please check out the paper for more details!
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Performance Evaluation of Itoyori

e \We evaluated Itoyori with three fork-join applications

o Cilksort, UTS-Mem, and ExaFMM

e In this talk, we show the result for ExaFMM only

Experimental environment:
e Wisteria/BDEC-01 Odyssey supercomputer at The University of Tokyo
® Similar configuration to Fugaku Supercomputer

O CPU: Fujitsu A64FX (48 cores/node)
o Memory: HBM2 (32 GiB/node)

o Network: Fujitsu MPI over Tofu Interconnect D
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ExaFMM (High-Performance FMM Library) [Yokota+, CPC '13]

e ExaFMM approximates interactions between
far-enough particles by using a global tree

o Highly dynamic and irregular parallelism
e \We ported a shared-memory fork-join

task-parallel implementation of ExaFMM
[Taura+, ScalA ’12] to Itoyori

e The overall parallel algorithm was not
changed from the original shared-memory Tree-based computation in ExaFMM
code, except for microscopic changes from [Yokota+, CPC "13]

o If we were to use MPI, we would have to redesign
the parallel algorithm itself
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ExaFMM D> Strong Scaling
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ExaFMM D> Strong Scaling

Vs

® An existing MPI implementation of ExaFMM
e Hybrid of MPI and fork-join task parallelism

o Inter-node: static load balancing using MPI

o Intra-node: task parallelism (the same)
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e Software caching improved
performance by up to 6.0x

e 7.5x speedup on 12 nodes (vs. 1 node)
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ExaFMM D> Strong Scaling
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® An existing MPI implementation of ExaFMM

€+ No Cache e Hybrid of MPI and fork-join task parallelism
—A— Itoyori (with Cache)
—-3-- MPI o Inter-node: static load balancing using MPI

1000 o Intra-node: task parallelism (the same)

©...  10M bodies

il e Software caching improved
performance by up to 6.0x
iﬁox e 7.5x speedup on 12 nodes (vs. 1 node)

LU DTS, Itoyori performs competitively to the
100 1000 hand-optimized MPI version, while main-
# of cores taining high productivity

100

Execution time (s)
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[«
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Summary

e Jtoyoriis a C++ global-view programming framework for fork-join task parallelism
e Software caching is a key to scale fork-join parallelism to distributed memory
e We designed efficient software cache with checkout/checkin APIs

e Our experiments suggested that Itoyori could achieve a good balance between
productivity and performance

Itoyori 5‘&
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