
Almost Deterministic Work Stealing
SC’19

Shumpei Shiina, Kenjiro Taura

The University of Tokyo

11/20/2019



Overview

• Work Stealing is a popular scheduling algorithm for Task Parallelism

• However, data locality ofWork Stealing is not good

→We propose Almost Deterministic Work Stealing (ADWS) to solve this problem

Visualization of task mapping

• Simulation of 2D dambreaking

• Colors of cells represent ranks of workers (blue: 0→ red: 63)

Fig. Random Work Stealing Fig. ADWS (no steal) Fig. ADWS
1 / 32



Outline

Introduction

Motivating Example: Calculation of Particle Interactions

Task Parallelism and Work Stealing

Data Locality in Work Stealing

Proposed Method: Almost Deterministic Work Stealing (ADWS)

Deterministic Task Allocation

Hierarchical Localized Work Stealing

Evaluation

Related Work

Conclusion



Outline

Introduction

Motivating Example: Calculation of Particle Interactions

Task Parallelism and Work Stealing

Data Locality in Work Stealing

Proposed Method: Almost Deterministic Work Stealing (ADWS)

Deterministic Task Allocation

Hierarchical Localized Work Stealing

Evaluation

Related Work

Conclusion



Outline

Introduction

Motivating Example: Calculation of Particle Interactions

Task Parallelism and Work Stealing

Data Locality in Work Stealing

Proposed Method: Almost Deterministic Work Stealing (ADWS)

Deterministic Task Allocation

Hierarchical Localized Work Stealing

Evaluation

Related Work

Conclusion



Motivating Example: Calculation of Particle Interactions

2D dambreaking simulation

• Smoothed Particle Hydrodynamics (SPH)

which calculates short-range forces

• Particles are managed in a quadtree

(an octree in 3D)

• The quadtree is usually unbalanced →

2 / 32



Parallelization while Traversing the Tree

Sequential Code

particle_interaction(node) {

if (node is leaf) {

/* Calculate particle interactions

* in leaf node */

} else {

for (child in node.children) {

particle_interaction(child);

}

}

}

Task Parallel Code

particle_interaction(node) {

if (node is leaf) {

/* Calculate particle interactions

* in leaf node */

} else {

task_group tg;

for (child in node.children) {

/* Spawn a child node as a task (fork) */

tg.run([=]{ particle_interaction(child); });

}

/* Wait for completion of tasks (join) */

tg.wait();

}

}

3 / 32



Outline

Introduction

Motivating Example: Calculation of Particle Interactions

Task Parallelism and Work Stealing

Data Locality in Work Stealing

Proposed Method: Almost Deterministic Work Stealing (ADWS)

Deterministic Task Allocation

Hierarchical Localized Work Stealing

Evaluation

Related Work

Conclusion



Task Parallelism

• Parallel execution model by specifying

dependencies between tasks

• Directed Acyclic Graph (DAG)

• Fork-join pattern is frequently used

• This paper focuses on nested fork-join programs

task_group tg;

tg.run([]{ ... });

tg.run([]{ ... });

tg.run([]{ ... });

tg.run([]{ ... });

tg.wait();

Fig. TBB-like Task Group Notation

Fig. Directed Acyclic Graph (DAG)

4 / 32



Work Stealing1

• Frequently used strategy to schedule task parallel programs

• Each worker has its own task queue, and pushes/pops tasks to/from the queue

• If tasks are exhausted in its local queue, it tries to steal tasks from other workers

• Usually victims are chosen randomly

• We call it random work stealing

worker 0 worker 1 worker 2 worker 3 

StealTask Queue

Task 

1
R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded computations by work stealing,” J. ACM, vol. 46, no. 5, pp. 720–748, 1999.

5 / 32



Outline

Introduction

Motivating Example: Calculation of Particle Interactions

Task Parallelism and Work Stealing

Data Locality in Work Stealing

Proposed Method: Almost Deterministic Work Stealing (ADWS)

Deterministic Task Allocation

Hierarchical Localized Work Stealing

Evaluation

Related Work

Conclusion



1. Data Locality in DAGs

• Close nodes in DAGs tend to touch close data

• We want to schedule close nodes in close cores

• Much more important in hierarchical memory architectures

• What if worker {0, 1}, {2, 3} are in the same NUMA nodes?

0

2

3 2 1 0

3 3 2 2

0

1 1 0 0

3 3 2 2 1 1 0 0

memory

Fig. Good Data Locality

0

0

0 3 1 0

0 1 3 2

1

1 3 0 2

0 1 3 2 1 3 0 2

memory

Fig. Bad Data Locality

6 / 32



2. Data Locality in Iterative Programs

• Iterative programs have similar DAGs across iterations

• e.g, programs that iterate an array over and over

• Data locality exists “vertically” in DAGs

• If scheduling is deterministic, data locality is good

7 / 32



Bad Data Locality in RandomWork Stealing

Data locality is usually damaged by its randomness

1. Data Locality in DAGs

• Steal strategy is unaware of memory hierarchy

2. Data Locality in Iterative Programs

• Scheduling is not deterministic across iterations

8 / 32



Good Data Locality in ADWS

Almost Deterministic Work Stealing (ADWS) improves both data locality

1. Data Locality in DAGs
• Improved by task mapping thatmatches task hierarchy with memory hierarchy

2. Data Locality in Iterative Programs
• Improved by almost deterministic scheduling across iterations

• ADWS also does dynamic load balancing

9 / 32



Outline

Introduction

Motivating Example: Calculation of Particle Interactions

Task Parallelism and Work Stealing

Data Locality in Work Stealing

Proposed Method: Almost Deterministic Work Stealing (ADWS)

Deterministic Task Allocation

Hierarchical Localized Work Stealing

Evaluation

Related Work

Conclusion



ADWS Consists of Two Parts

1. Deterministic Task Allocation

• Initial deterministic task mapping

• Static partitioning for nested fork-join programs

2. Hierarchical Localized Work Stealing

• Dynamic load balancing

• Performs work stealing in a hierarchical manner

10 / 32



Task Hierarchy and Memory Hierarchy

0

5 02

06 5

67

2

6 5 1 0

6 5 0

7 6 56

56

4

1 01

0

0

0

5

3

3 2

3

1

14

1

2 1

1

3 2

2

23

2

4 3

3

4

2

7

Fig. Desired Scheduling of a DAG

1 0234567

Fig. Example of Memory Hierarchy

• Task mapping respects memory hierarchy

• Close workers touch close nodes in DAGs

• Without a priori knowledge, it seems impossible

• What kind of information is needed?

11 / 32



Hints from Programmers

Programmers must specify the amount of work for each task explicitly

• It does not have to be absolute values; relative values are OK

(ratio of w_1, ..., w_4 to w_all)

• Rough estimates are acceptable thanks to dynamic load balancing at runtime

• It is usually hardware-independent and application-specific

• e.g. the number of particles (next slide)

task_group tg(w_all);

tg.run([]{ ... }, w_1);

tg.run([]{ ... }, w_2);

tg.run([]{ ... }, w_3);

tg.run([]{ ... }, w_4);

tg.wait();

where w_1 + w_2 + w_3 + w_4 == w_all
12 / 32



Specifying Hints is Not So Hard

We can just use the number of particles in particle interactions

Particle Interactions in ADWS

particle_interaction(node) {

if (node is leaf) {

/* Calculate particle interactions in leaf node */

} else {

task_group tg(node.n_particles);

for (child in node.children) {

tg.run([=]{ particle_interaction(child); }, child.n_particles);

}

tg.wait();

}

}

• The number of particles is a rough estimate

13 / 32



Outline

Introduction

Motivating Example: Calculation of Particle Interactions

Task Parallelism and Work Stealing

Data Locality in Work Stealing

Proposed Method: Almost Deterministic Work Stealing (ADWS)

Deterministic Task Allocation

Hierarchical Localized Work Stealing

Evaluation

Related Work

Conclusion



Overview of Deterministic Task Allocation (1/4)

• Circles: tasks

• Triangles: worker ranges

• Bottom rectangles: workers

• Initially, there is only one task

• We want to distribute it to all workers

7 6 5 4 3 2 1 0

0
8.0

14 / 32



Overview of Deterministic Task Allocation (2/4)

• Left task: the spawned task

• Right task: the continuation

• A new task is spawned

• Split the worker range into two parts

based on the amount of work

specified by programmers

• A task is executed by a worker whose

rank is the smallest in its worker

range

7 6 5 4 3 2 1 0

0

4 0
3.6

8.0 - 3.6
= 4.4

8.0

15 / 32



Overview of Deterministic Task Allocation (3/4)

• Continue to split worker ranges

recursively and in parallel

7 6 5 4 3 2 1 0

0

4 0

5 4 0 0
3.0

3.6

3.6 - 3.0
= 0.6

8.0 - 3.6
= 4.4

3.8 4.4 - 3.8
= 0.6

8.0

16 / 32



Overview of Deterministic Task Allocation (4/4)

• Task distribution proceeds while

workers are executing actual tasks

7 6 5 4 3 2 1 0

0

4 0

5 4 0 0

2 06 5
1.8

3.0

3.0 - 1.8
= 1.2

3.6

3.6 - 3.0
= 0.6

8.0 - 3.6
= 4.4

3.8 4.4 - 3.8
= 0.6

1.8
3.8 - 1.8
= 2.0

8.0

17 / 32



Algorithm of Deterministic Task Allocation (1/3)

• Workers search for left boundary of their

work region

• If worker range is split at worker k
• Worker i pushes a task to worker k

i

 k i

l k j i

local 
queue

migration 
queue 

worker i

18 / 32



Algorithm of Deterministic Task Allocation (2/3)

• If worker range is split at worker i itself
• Worker i pushes the continuation to local

queue

• Worker i executes the spawned task (left)

i

i

i

 k

i

l k j i

t1

local 
queue

migration 
queue 

t1

worker i

19 / 32



Algorithm of Deterministic Task Allocation (3/3)

• Tasks from other workers are pushed to

migration queue
t1

i

i

i

i

i

 j

 k

i

l k j i

local 
queue

t2

migration 
queue 

t1

t2

worker i

20 / 32



Characteristics of Deterministic Task Allocation

• Tasks are executed from left to right

• The same order as serial execution

• Work-first scheduling policy

• Workers do not push tasks to a

migration queue simultaneously

• No lock contention while searching

• Please read the paper for more details

t1

i

i

i

i

i

 j

 k

i

l k j i

local 
queue

t2

migration 
queue 

t1

t2

worker i

21 / 32



Outline

Introduction

Motivating Example: Calculation of Particle Interactions

Task Parallelism and Work Stealing

Data Locality in Work Stealing

Proposed Method: Almost Deterministic Work Stealing (ADWS)

Deterministic Task Allocation

Hierarchical Localized Work Stealing

Evaluation

Related Work

Conclusion



Hierarchical Localized Work Stealing (1/4)

• It depends on Deterministic Task

Allocation

• Limit the range of steals to inside its

“group”

7 6 5 4 3 2 1 0

0

4 0

5 4 0 0

2 06 5

22 / 32



Hierarchical Localized Work Stealing (2/4)

• Move to its parent group when the current

task group completes

7 6 5 4 3 2 1 0

0

4 0

5 4 0 0

23 / 32



Hierarchical Localized Work Stealing (3/4)

• It follows partitioning of deterministic task

allocation from bottom up

7 6 5 4 3 2 1 0

0

4 0

24 / 32



Hierarchical Localized Work Stealing (4/4)

• It becomes equivalent to random work

stealing at last

• Ideally, few tasks are ready at this time

7 6 5 4 3 2 1 0

0

25 / 32



Outline

Introduction

Motivating Example: Calculation of Particle Interactions

Task Parallelism and Work Stealing

Data Locality in Work Stealing

Proposed Method: Almost Deterministic Work Stealing (ADWS)

Deterministic Task Allocation

Hierarchical Localized Work Stealing

Evaluation

Related Work

Conclusion



Experiment Environment

Implement ADWS onMassiveThreads2, a lightweight threading library

• Skylake 6130 @ 2.1 GHz

• 4 sockets

• 4 NUMA nodes

• 16 x 4 = 64 cores

2
J. Nakashima and K. Taura, “MassiveThreads: A thread library for high productivity languages,” in Concurrent Objects and Beyond: Papers dedicated

to Akinori Yonezawa on the Occasion of His 65th Birthday. Springer Berlin Heidelberg, 2014, pp. 222–238.

26 / 32



Performance Evaluation of Particle Interactions

We modified FDPS3 to use nested fork-join parallelism

• Original implementation of FDPS uses GNU OpenMP parallel for (dynamic)

• # of particles: 138968

• 2D dam breaking

ADWS

Original FDPS implementation
(OpenMP dynamic)

Higher is better

3
M. Iwasawa, A. Tanikawa, N. Hosono, et al., “Implementation and performance of FDPS: A framework for developing parallel particle simulation codes,”

Publications of the Astronomical Society of Japan, vol. 68, no. 4, 2016.

27 / 32



Performance Evaluation of Heat2D

Highlymemory-bound and iterative application (5-point stencil)

• It divides a 2D region into four parts recursively

• optimized (SIMD)

• 4096x4096 matrices

• cutoff = 64x64

• single precision

• Constrained WS: 4

ADWS, OpenMP static

Existing Methods
for Task Parallelism

Higher is better

4
J. Lifflander, S. Krishnamoorthy, and L. V. Kale, “Optimizing data locality for fork/join programs using constrained work stealing,” in SC ’14: Proceedings

of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2014, pp. 857–868

28 / 32



Performance Evaluation of Matrix Multiplication

Not iterative application using a simple divide-and-conquer algorithm(
C11 C12
C21 C22

)
=

(
A11 A12
A21 A22

) (
B11 B12
B21 B22

)
=

(
A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

)

• optimized (SIMD)

• 4096x4096 matrices

• cutoff = 128x128

• single precision

• Hierarchical WS: 5

ADWS

Random WS

Higher is better

5
S.-J. Min, C. Iancu, and K. Yelick, “Hierarchical work stealing onmanycore clusters,” in Fifth Conference on PartitionedGlobal Address Space Programming

Models (PGAS11), vol. 625, 2011 29 / 32



Outline

Introduction

Motivating Example: Calculation of Particle Interactions

Task Parallelism and Work Stealing

Data Locality in Work Stealing

Proposed Method: Almost Deterministic Work Stealing (ADWS)

Deterministic Task Allocation

Hierarchical Localized Work Stealing

Evaluation

Related Work

Conclusion



Comparison to Related Work

• Optimize scheduling by using metrics of previous iterations678

• ADWS is not specific to iterative programs

• Optimize scheduling by using users’ hardware-specific hints910

• ADWS requires users’ hints, but they are not hardware-specific

• Optimize a steal strategy based on memory hierarchy without hints11

• It does not optimize data locality of iterative programs
6

U. A. Acar, G. E. Blelloch, and R. D. Blumofe, “The data locality of work stealing,” in Proceedings of the Twelfth Annual ACM Symposium on Parallel

Algorithms and Architectures, ACM, 2000, pp. 1–12.
7

J. Lifflander, S. Krishnamoorthy, and L. V. Kale, “Optimizing data locality for fork/join programs using constrained work stealing,” in SC ’14: Proceedings

of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2014, pp. 857–868.
8

Q. Chen, M. Guo, and H. Guan, “LAWS: Locality-aware work-stealing for multi-socket multi-core architectures,” in Proceedings of the 28th ACM Interna-

tional Conference on Supercomputing, ACM, 2014, pp. 3–12.
9

Y. Guo, J. Zhao, V. Cave, et al., “SLAW: A scalable locality-aware adaptive work-stealing scheduler,” in 2010 IEEE International Symposium on Parallel

Distributed Processing (IPDPS), 2010, pp. 1–12.
10

J. Deters, J. Wu, Y. Xu, et al., “A NUMA-aware provably-efficient task-parallel platform based on the work-first principle,” in 2018 IEEE International

Symposium on Workload Characterization (IISWC), 2018, pp. 59–70.
11

S.-J. Min, C. Iancu, and K. Yelick, “Hierarchical work stealing onmanycore clusters,” in Fifth Conference on PartitionedGlobal Address Space Programming

Models (PGAS11), vol. 625, 2011.

30 / 32



Outline

Introduction

Motivating Example: Calculation of Particle Interactions

Task Parallelism and Work Stealing

Data Locality in Work Stealing

Proposed Method: Almost Deterministic Work Stealing (ADWS)

Deterministic Task Allocation

Hierarchical Localized Work Stealing

Evaluation

Related Work

Conclusion



Conclusion

We have presented Almost Deterministic Work Stealing (ADWS), which:

• focuses on nested fork-join parallelism

• improves data locality in work stealing

• memory hierarchy-aware deterministic scheduling

ADWS requires users’ hints, but

• it is hardware-independent and application-specific

• it keeps portability of code

ADWS can speedup task parallel programs while keeping productivity

31 / 32



Future Work

• Automatic work estimation for iterative programs

• Programmers do not have to specify hints

• More benchmarks

• Combine with cache-aware scheduling like CATS12

12
Q. Chen, M. Guo, and Z. Huang, “CATS: Cache aware task-stealing based on online profiling in multi-socket multi-core architectures,” in Proceedings of

the 26th ACM International Conference on Supercomputing, ACM, 2012, pp. 163–172.

32 / 32


	Overview
	Introduction
	Motivating Example: Calculation of Particle Interactions
	Task Parallelism and Work Stealing
	Data Locality in Work Stealing

	Proposed Method: Almost Deterministic Work Stealing (ADWS)
	Deterministic Task Allocation
	Hierarchical Localized Work Stealing

	Evaluation
	Related Work
	Conclusion

