
Distributed Continuation Stealing is
More Scalable than You Might Think

IEEE Cluster ’22

Shumpei Shiina, Kenjiro Taura

The University of Tokyo

2022.09.06

Dynamic Load Balancing on Distributed Memory

• Dynamic load balancing is particularly important for irregular algorithms

– e.g., sorting, sparse matrix arithmetic, tree-based algorithms, AMR, ...

• Hardware is becoming massively parallel→Manual load balancing is getting harder

– intra-/inter-node, many-core, deep cache hierarchy, NUMA, ...

• Work stealing is a popular algorithm for automatic load balancing by the runtime

– Only when a processor becomes idle, it attempts to steal work from another processor

Fig. Fluid simulation (SPH)

Fig. Unbalanced Tree

1 / 24

Task Parallelism (Fork-Join Parallelism)

• Spawn (fork) a concurrent thread and join its completion

– threads can be created recursively→ well suited to

divide-and-conquer algorithms

thread th = spawn([=]{ A(); });

B(); // A() and B() are executed concurrently

th.join(); // ensures completion of A()

• General parallel execution model for many algorithms

– e.g., matrix arithmetic, FFT, sorting, dynamic programming, game

tree search, space-partitioning tree, N-body, ...

– Adopted by many runtimes: Cilk, Intel TBB, Java fork/join,

OpenMP, ...

• A bunch of threads (� # of cores) can be created

– The underlying runtime performs dynamic load balancing

Fig. Task dependency graph

2 / 24

Work Stealing [Blumofe and Leiserson, JACM ’99]

• Widely used scheduling strategy for task-parallel programs

• Each processor has its own thread queue

• A processor pushes stealable threads to its thread queue

• A processor pops a thread from its local queue when the current thread is completed

• When the local queue is empty, it steals a thread from a randomly selected processor

Processor 1 Processor 2 Processor 3

…
Processor =

Thread Thread Queue

Steal

3 / 24

What is Continuation Stealing?

Thread T?:
...

thread T2 = spawn([=]{ B2; });

B?;

T2.join();

B?

B2

Spawn

T?

T2

Join

Processor 1: parent first

Processor 2: stealProcessor 1: child first

Processor 2: steal

The newly created child is stolen

→ Child stealing
The parent’s continuation is stolen

→ Continuation stealing

4 / 24

What is Continuation Stealing?

Thread T?:
...

thread T2 = spawn([=]{ B2; });

B?;

T2.join();

B?

B2

Spawn
T?

T2

Join

Processor 1: parent first

Processor 2: stealProcessor 1: child first

Processor 2: steal

The newly created child is stolen

→ Child stealing
The parent’s continuation is stolen

→ Continuation stealing

4 / 24

What is Continuation Stealing?

Thread T?:
...

thread T2 = spawn([=]{ B2; });

B?;

T2.join();

B?

B2

Spawn
T?

T2

Join

Processor 1: parent first

Processor 2: stealProcessor 1: child first

Processor 2: steal

The newly created child is stolen

→ Child stealing
The parent’s continuation is stolen

→ Continuation stealing

4 / 24

What is Continuation Stealing?

Thread T?:
...

thread T2 = spawn([=]{ B2; });

B?;

T2.join();

B?

B2

Spawn
T?

T2

Join

Processor 1: parent first

Processor 2: stealProcessor 1: child first

Processor 2: steal

The newly created child is stolen

→ Child stealing
The parent’s continuation is stolen

→ Continuation stealing

4 / 24

What is Continuation Stealing?

Thread T?:
...

thread T2 = spawn([=]{ B2; });

B?;

T2.join();

B?

B2

Spawn
T?

T2

Join

Processor 1: parent first

Processor 2: stealProcessor 1: child first

Processor 2: steal

The newly created child is stolen

→ Child stealing
The parent’s continuation is stolen

→ Continuation stealing

4 / 24

What is Continuation Stealing?

Thread T?:
...

thread T2 = spawn([=]{ B2; });

B?;

T2.join();

B?

B2

Spawn
T?

T2

Join

Processor 1: parent first

Processor 2: steal

Processor 1: child first

Processor 2: steal

The newly created child is stolen

→ Child stealing
The parent’s continuation is stolen

→ Continuation stealing

4 / 24

What is Continuation Stealing?

Thread T?:
...

thread T2 = spawn([=]{ B2; });

B?;

T2.join();

B?

B2

Spawn
T?

T2

Join

Processor 1: parent first

Processor 2: steal

Processor 1: child first

Processor 2: steal

The newly created child is stolen

→ Child stealing

The parent’s continuation is stolen

→ Continuation stealing

4 / 24

What is Continuation Stealing?

Thread T?:
...

thread T2 = spawn([=]{ B2; });

B?;

T2.join();

B?

B2

Spawn
T?

T2

Join

Processor 1: parent first

Processor 2: steal

Processor 1: child first

Processor 2: steal

The newly created child is stolen

→ Child stealing
The parent’s continuation is stolen

→ Continuation stealing

4 / 24

What is Continuation Stealing?

Thread T?:
...

thread T2 = spawn([=]{ B2; });

B?;

T2.join();

B?

B2

Spawn
T?

T2

Join

Processor 1: parent first

Processor 2: steal

Processor 1: child first

Processor 2: steal

The newly created child is stolen

→ Child stealing
The parent’s continuation is stolen

→ Continuation stealing

4 / 24

What is Continuation Stealing?

Thread T?:
...

thread T2 = spawn([=]{ B2; });

B?;

T2.join();

B?

B2

Spawn
T?

T2

Join

Processor 1: parent first

Processor 2: steal

Processor 1: child first

Processor 2: steal

The newly created child is stolen

→ Child stealing

The parent’s continuation is stolen

→ Continuation stealing

4 / 24

Why We Consider Continuation Stealing is Better

• Many shared-memory runtimes (e.g., Cilk) use continuation stealing because of its

efficiency

• Good characteristic: Continuation stealing preserves the serial execution order

– i.e., the execution order of programs with spawn/join keywords removed

– Ordinary function call: execute the called function→ its continuation

– Continuation stealing: execute the spawned thread→ its continuation

• Because of this execution order, continuation stealing is unlikely to be blocked at join

– Later, I’ll explain why

5 / 24

Continuation Stealing on Distributed Memory

• However, most distributed work-stealing runtimes use child stealing

• This is presumably because people might think...

1. It is difficult to implement continuation stealing as a library with unmodified C/C++

compilers

2. Continuation stealing is less efficient than child stealing because a whole call stack needs

to be copied across nodes

• The first concern was addressed by [Akiyama and Taura, HPDC ’15]

– Efficient RDMA-based continuation stealing by copying call stacks across nodes

• The second concern has not previously been addressed

– No performance comparison against child stealing or any other existing runtimes

• This paper suggests that the second assumption is not true

6 / 24

Continuation Stealing on Distributed Memory

• However, most distributed work-stealing runtimes use child stealing

• This is presumably because people might think...

1. It is difficult to implement continuation stealing as a library with unmodified C/C++

compilers

2. Continuation stealing is less efficient than child stealing because a whole call stack needs

to be copied across nodes

• The first concern was addressed by [Akiyama and Taura, HPDC ’15]

– Efficient RDMA-based continuation stealing by copying call stacks across nodes

• The second concern has not previously been addressed

– No performance comparison against child stealing or any other existing runtimes

• This paper suggests that the second assumption is not true

6 / 24

Continuation Stealing on Distributed Memory

• However, most distributed work-stealing runtimes use child stealing

• This is presumably because people might think...

1. It is difficult to implement continuation stealing as a library with unmodified C/C++

compilers

2. Continuation stealing is less efficient than child stealing because a whole call stack needs

to be copied across nodes

• The first concern was addressed by [Akiyama and Taura, HPDC ’15]

– Efficient RDMA-based continuation stealing by copying call stacks across nodes

• The second concern has not previously been addressed

– No performance comparison against child stealing or any other existing runtimes

• This paper suggests that the second assumption is not true

6 / 24

Continuation Stealing on Distributed Memory

• However, most distributed work-stealing runtimes use child stealing

• This is presumably because people might think...

1. It is difficult to implement continuation stealing as a library with unmodified C/C++

compilers

2. Continuation stealing is less efficient than child stealing because a whole call stack needs

to be copied across nodes

• The first concern was addressed by [Akiyama and Taura, HPDC ’15]

– Efficient RDMA-based continuation stealing by copying call stacks across nodes

• The second concern has not previously been addressed

– No performance comparison against child stealing or any other existing runtimes

• This paper suggests that the second assumption is not true

6 / 24

Continuation Stealing on Distributed Memory

• However, most distributed work-stealing runtimes use child stealing

• This is presumably because people might think...

1. It is difficult to implement continuation stealing as a library with unmodified C/C++

compilers

2. Continuation stealing is less efficient than child stealing because a whole call stack needs

to be copied across nodes

• The first concern was addressed by [Akiyama and Taura, HPDC ’15]

– Efficient RDMA-based continuation stealing by copying call stacks across nodes

• The second concern has not previously been addressed

– No performance comparison against child stealing or any other existing runtimes

• This paper suggests that the second assumption is not true

6 / 24

Continuation Stealing on Distributed Memory

• However, most distributed work-stealing runtimes use child stealing

• This is presumably because people might think...

1. It is difficult to implement continuation stealing as a library with unmodified C/C++

compilers

2. Continuation stealing is less efficient than child stealing because a whole call stack needs

to be copied across nodes

• The first concern was addressed by [Akiyama and Taura, HPDC ’15]

– Efficient RDMA-based continuation stealing by copying call stacks across nodes

• The second concern has not previously been addressed

– No performance comparison against child stealing or any other existing runtimes

• This paper suggests that the second assumption is not true

6 / 24

Continuation Stealing on Distributed Memory

• However, most distributed work-stealing runtimes use child stealing

• This is presumably because people might think...

1. It is difficult to implement continuation stealing as a library with unmodified C/C++

compilers

2. Continuation stealing is less efficient than child stealing because a whole call stack needs

to be copied across nodes

• The first concern was addressed by [Akiyama and Taura, HPDC ’15]

– Efficient RDMA-based continuation stealing by copying call stacks across nodes

• The second concern has not previously been addressed

– No performance comparison against child stealing or any other existing runtimes

• This paper suggests that the second assumption is not true

6 / 24

Contributions

Technical Contribution:
• Efficient join implementations over RDMA, which were not covered by previous work

– in order to reveal the full potential of continuation stealing

Experimental Results:

• Despite a small increase in steal latency, continuation stealing often outperforms

child stealing overall

• Even compared with existing runtimes, continuation stealing is reasonably fast

(showing great scalability tomore than 100k cores)

• As well as steal policies, different join policies largely affect performance

particularly for programs with a complicated dependency pattern

Continuation stealing is beneficial even on distributed memory!

7 / 24

Outline

Background

Joining Threads over RDMA

Evaluation

Performance Analysis of Various Scheduling Policies (Synthetic Benchmark)

Scalability Study with State-of-the-Art Systems (UTS Benchmark)

Thread Migration Capability and Futures (LCS Benchmark)

Conclusion and Future Work

Outline

Background

Joining Threads over RDMA

Evaluation

Performance Analysis of Various Scheduling Policies (Synthetic Benchmark)

Scalability Study with State-of-the-Art Systems (UTS Benchmark)

Thread Migration Capability and Futures (LCS Benchmark)

Conclusion and Future Work

Child Stealing vs. Continuation Stealing on distributed memory

Child Stealing Continuation Stealing

Easy to implement? Yes Not so easy

Representation of a

stealable task
Function pointer + arguments Call stack

Preserves serial

execution order?
No Yes

Likely to efficiently

resolve join?
No Yes

Continuation stealing requires thread migration (without compiler support), which is

nontrivial to implement (but possible [Akiyama and Taura, HPDC ’15])

Continuation stealing needs to copy the call stack, which is typically larger than a func-

tion pointer and its arguments→ Larger steal cost?

Continuation stealing preserves the serial execution order (the order without

spawn/join primitives)→ good theoretical bounds are known
Continuation stealing is considered more efficient for resolving join→ Next slide

8 / 24

Child Stealing vs. Continuation Stealing on distributed memory

Child Stealing Continuation Stealing

Easy to implement? Yes Not so easy

Representation of a

stealable task
Function pointer + arguments Call stack

Preserves serial

execution order?
No Yes

Likely to efficiently

resolve join?
No Yes

Continuation stealing requires thread migration (without compiler support), which is

nontrivial to implement (but possible [Akiyama and Taura, HPDC ’15])

Continuation stealing needs to copy the call stack, which is typically larger than a func-

tion pointer and its arguments→ Larger steal cost?

Continuation stealing preserves the serial execution order (the order without

spawn/join primitives)→ good theoretical bounds are known
Continuation stealing is considered more efficient for resolving join→ Next slide

8 / 24

Child Stealing vs. Continuation Stealing on distributed memory

Child Stealing Continuation Stealing

Easy to implement? Yes Not so easy

Representation of a

stealable task
Function pointer + arguments Call stack

Preserves serial

execution order?
No Yes

Likely to efficiently

resolve join?
No Yes

Continuation stealing requires thread migration (without compiler support), which is

nontrivial to implement (but possible [Akiyama and Taura, HPDC ’15])

Continuation stealing needs to copy the call stack, which is typically larger than a func-

tion pointer and its arguments→ Larger steal cost?

Continuation stealing preserves the serial execution order (the order without

spawn/join primitives)→ good theoretical bounds are known
Continuation stealing is considered more efficient for resolving join→ Next slide

8 / 24

Child Stealing vs. Continuation Stealing on distributed memory

Child Stealing Continuation Stealing

Easy to implement? Yes Not so easy

Representation of a

stealable task
Function pointer + arguments Call stack

Preserves serial

execution order?
No Yes

Likely to efficiently

resolve join?
No Yes

Continuation stealing requires thread migration (without compiler support), which is

nontrivial to implement (but possible [Akiyama and Taura, HPDC ’15])

Continuation stealing needs to copy the call stack, which is typically larger than a func-

tion pointer and its arguments→ Larger steal cost?

Continuation stealing preserves the serial execution order (the order without

spawn/join primitives)→ good theoretical bounds are known

Continuation stealing is considered more efficient for resolving join→ Next slide

8 / 24

Child Stealing vs. Continuation Stealing on distributed memory

Child Stealing Continuation Stealing

Easy to implement? Yes Not so easy

Representation of a

stealable task
Function pointer + arguments Call stack

Preserves serial

execution order?
No Yes

Likely to efficiently

resolve join?
No Yes

Continuation stealing requires thread migration (without compiler support), which is

nontrivial to implement (but possible [Akiyama and Taura, HPDC ’15])

Continuation stealing needs to copy the call stack, which is typically larger than a func-

tion pointer and its arguments→ Larger steal cost?

Continuation stealing preserves the serial execution order (the order without

spawn/join primitives)→ good theoretical bounds are known

Continuation stealing is considered more efficient for resolving join→ Next slide

8 / 24

Child Stealing → Joins are Likely to be Blocked

B?

B2

Spawn
T?

T2

Join

Processor 1: parent first

Processor 2: steal

Execution of the child B2 is delayed

compared to the parent B?

The parent is likely to reach the join earlier

→ The parent is likely to be blocked at join

The parent can be resumed when the child is completed,

but processor 1 may be busy when the join is resolved

→ execution of the continuation of the join can be delayed

9 / 24

Child Stealing → Joins are Likely to be Blocked

B?

B2

Spawn
T?

T2

Join

Processor 1: parent first

Processor 2: steal

Execution of the child B2 is delayed

compared to the parent B?

The parent is likely to reach the join earlier

→ The parent is likely to be blocked at join

The parent can be resumed when the child is completed,

but processor 1 may be busy when the join is resolved

→ execution of the continuation of the join can be delayed

9 / 24

Child Stealing → Joins are Likely to be Blocked

B?

B2

Spawn
T?

T2

Join

Processor 1: parent first

Processor 2: steal

Execution of the child B2 is delayed

compared to the parent B?

The parent is likely to reach the join earlier

→ The parent is likely to be blocked at join

The parent can be resumed when the child is completed,

but processor 1 may be busy when the join is resolved

→ execution of the continuation of the join can be delayed

9 / 24

Child Stealing → Joins are Likely to be Blocked

B?

B2

Spawn
T?

T2

Join

Processor 1: parent first

Processor 2: steal

Execution of the child B2 is delayed

compared to the parent B?

The parent is likely to reach the join earlier

→ The parent is likely to be blocked at join

The parent can be resumed when the child is completed,

but processor 1 may be busy when the join is resolved

→ execution of the continuation of the join can be delayed

9 / 24

Child Stealing → Joins are Likely to be Blocked

B?

B2

Spawn
T?

T2

Join

Processor 1: parent first

Processor 2: steal

Execution of the child B2 is delayed

compared to the parent B?

The parent is likely to reach the join earlier

→ The parent is likely to be blocked at join

The parent can be resumed when the child is completed,

but processor 1 may be busy when the join is resolved

→ execution of the continuation of the join can be delayed

9 / 24

Continuation Stealing → Joins areUnlikely to be Blocked

B?

B2

Spawn
T?

T2

Join

Processor 1: child first

Processor 2: steal

Execution of the parent B? is delayed

compared to the child B2

The child is likely to be completed earlier

The join is likely to be already resolved

10 / 24

Continuation Stealing → Joins areUnlikely to be Blocked

B?

B2

Spawn
T?

T2

Join

Processor 1: child first

Processor 2: steal

Execution of the parent B? is delayed

compared to the child B2

The child is likely to be completed earlier

The join is likely to be already resolved

10 / 24

Continuation Stealing → Joins areUnlikely to be Blocked

B?

B2

Spawn
T?

T2

Join

Processor 1: child first

Processor 2: steal

Execution of the parent B? is delayed

compared to the child B2

The child is likely to be completed earlier

The join is likely to be already resolved

10 / 24

Continuation Stealing → Joins areUnlikely to be Blocked

B?

B2

Spawn
T?

T2

Join

Processor 1: child first

Processor 2: steal

Execution of the parent B? is delayed

compared to the child B2

The child is likely to be completed earlier

The join is likely to be already resolved

10 / 24

Continuation Stealing → Joins areUnlikely to be Blocked

B?

B2

Spawn
T?

T2

Join

Processor 1: child first

Processor 2: steal

Execution of the parent B? is delayed

compared to the child B2

The child is likely to be completed earlier

The join is likely to be already resolved

10 / 24

Previous Work – Uni-Address Threads [Akiyama and Taura, HPDC ’15]

• Efficient RDMA-based continuation stealing without compiler modification

• Basic idea: copy thread stacks to the same virtual address before threads are executed

• Good scalability to 4096 cores was reported

• No comparison with child stealing or existing distributed task-parallel runtimes

We still don’t know whether distributed continuation stealing is worth implementing

11 / 24

Outline

Background

Joining Threads over RDMA

Evaluation

Performance Analysis of Various Scheduling Policies (Synthetic Benchmark)

Scalability Study with State-of-the-Art Systems (UTS Benchmark)

Thread Migration Capability and Futures (LCS Benchmark)

Conclusion and Future Work

Performance Improvements for Join

• To evaluate the full potential of continuation stealing, we need to carefully design join

implementations, which were not well considered in previous work

• We introduced two improvements for join

1. How to efficiently resume the continuation of the join when blocked

2. How to efficiently free memory needed for join remotely (see the paper)

• In this talk, we will explain the first improvement

12 / 24

Joining Strategy – Overview

• In general, there are two strategies to resolve a join in fork-join programs

1. Stalling join: across a join, the executing processor is the same (e.g., Intel TBB)

2. Greedy join: the processor who runs the parent or the child, whichever reaches a join point

later, executes the continuation of the join (e.g., Cilk)

• Theoretically, greedy join is considered better than stalling join

• In practice, greedy join is more difficult to implement because it involves thread

migration

• The previous work [Akiyama and Taura, HPDC ’15] uses stalling join strategy

• We implemented greedy join strategy by using RDMA atomic operations

13 / 24

Stalling Join (Previous Implementation)

B?

B2

Spawn
T?

T2

Join

Processor 1: child first

Processor 2: steal

The parent reaches the join before its child

Even if the child is completed, the continuation of the join must be

resumed by processor 2, who suspended the parent thread

However, processor 2may be busy when the join is resolved

→ execution of the continuation of the join can be delayed

14 / 24

Stalling Join (Previous Implementation)

B?

B2

Spawn
T?

T2

Join

Processor 1: child first

Processor 2: steal

The parent reaches the join before its child

Even if the child is completed, the continuation of the join must be

resumed by processor 2, who suspended the parent thread

However, processor 2may be busy when the join is resolved

→ execution of the continuation of the join can be delayed

14 / 24

Stalling Join (Previous Implementation)

B?

B2

Spawn
T?

T2

Join

Processor 1: child first

Processor 2: steal

The parent reaches the join before its child

Even if the child is completed, the continuation of the join must be

resumed by processor 2, who suspended the parent thread

However, processor 2may be busy when the join is resolved

→ execution of the continuation of the join can be delayed

14 / 24

Stalling Join (Previous Implementation)

B?

B2

Spawn
T?

T2

Join

Processor 1: child first

Processor 2: steal

The parent reaches the join before its child

Even if the child is completed, the continuation of the join must be

resumed by processor 2, who suspended the parent thread

However, processor 2may be busy when the join is resolved

→ execution of the continuation of the join can be delayed

14 / 24

Greedy Join (Our Improvement)

B?

B2

Spawn
T?

T2

Join

Processor 1: child first

Processor 2: steal

If the child thread is completed later, the continuation of the join is

immediately resumed by Processor 1

The parent thread needs to be migrated from

Processor 2 to Processor 1 at join

We devised an efficient RDMA-based implementation of greedy join

in a lock-free manner by utilizing RDMA atomic operations

15 / 24

Greedy Join (Our Improvement)

B?

B2

Spawn
T?

T2

Join

Processor 1: child first

Processor 2: steal

If the child thread is completed later, the continuation of the join is

immediately resumed by Processor 1

The parent thread needs to be migrated from

Processor 2 to Processor 1 at join

We devised an efficient RDMA-based implementation of greedy join

in a lock-free manner by utilizing RDMA atomic operations

15 / 24

Greedy Join (Our Improvement)

B?

B2

Spawn
T?

T2

Join

Processor 1: child first

Processor 2: steal

If the child thread is completed later, the continuation of the join is

immediately resumed by Processor 1

The parent thread needs to be migrated from

Processor 2 to Processor 1 at join

We devised an efficient RDMA-based implementation of greedy join

in a lock-free manner by utilizing RDMA atomic operations

15 / 24

Greedy Join (Our Improvement)

B?

B2

Spawn
T?

T2

Join

Processor 1: child first

Processor 2: steal

If the child thread is completed later, the continuation of the join is

immediately resumed by Processor 1

The parent thread needs to be migrated from

Processor 2 to Processor 1 at join

We devised an efficient RDMA-based implementation of greedy join

in a lock-free manner by utilizing RDMA atomic operations

15 / 24

Greedy Join (Our Improvement)

B?

B2

Spawn
T?

T2

Join

Processor 1: child first

Processor 2: steal

If the child thread is completed later, the continuation of the join is

immediately resumed by Processor 1

The parent thread needs to be migrated from

Processor 2 to Processor 1 at join

We devised an efficient RDMA-based implementation of greedy join

in a lock-free manner by utilizing RDMA atomic operations

15 / 24

Outline

Background

Joining Threads over RDMA

Evaluation

Performance Analysis of Various Scheduling Policies (Synthetic Benchmark)

Scalability Study with State-of-the-Art Systems (UTS Benchmark)

Thread Migration Capability and Futures (LCS Benchmark)

Conclusion and Future Work

Evaluation – Overview

Research questions:

1. How does continuation stealing perform compared with child stealing?

2. Is it practical to use continuation stealing in distributed task-parallel runtimes?

3. How important is thread migration (like greedy join) on distributed memory?

Summary of our findings:

1. Despite a small increase in steal latency (only less than 20%), continuation stealing

often outperforms child stealing by efficiently resolving joins

2. Even compared with existing bag-of-tasks runtimes (without joins), our system is

reasonably fast (96.4% parallel efficiency on 110,592 cores in UTS benchmark)

3. Lack of thread migration capability (at either fork or join) leads to bad

performance when we intensively use threads as futures (in LCS benchmark)

16 / 24

Evaluation – Overview

Research questions:

1. How does continuation stealing perform compared with child stealing?

2. Is it practical to use continuation stealing in distributed task-parallel runtimes?

3. How important is thread migration (like greedy join) on distributed memory?

Summary of our findings:

1. Despite a small increase in steal latency (only less than 20%), continuation stealing

often outperforms child stealing by efficiently resolving joins

2. Even compared with existing bag-of-tasks runtimes (without joins), our system is

reasonably fast (96.4% parallel efficiency on 110,592 cores in UTS benchmark)

3. Lack of thread migration capability (at either fork or join) leads to bad

performance when we intensively use threads as futures (in LCS benchmark)

16 / 24

Experimental Settings

• We implemented various strategies over MPI-3 RMA in a C++ library developed in the

previous work (MassiveThreads/DM [Akiyama and Taura, HPDC ’15])

• Two variants of continuation stealing (stalling and greedy join)

• Two variants of child stealing (RtC and Full), which mimic prevalent implementations

– Only the one with better performance (Full) is shown in this presentation

Experimental environment:

• ITO-A: ITO supercomputer (subsystem A) at Kyushu University (up to 256 nodes)

– Intel Xeon Gold 6154 (36 CPU cores/node), InfiniBand EDR 4x (100 Gbps), Open MPI v5.0.x

• Wisteria-O: Wisteria/BDEC-01 Odyssey at the University of Tokyo (up to 2304 nodes)

– Fujitsu A64FX (48 CPU cores/node), Tofu Interconnect-D, Fujitsu MPI

17 / 24

Outline

Background

Joining Threads over RDMA

Evaluation

Performance Analysis of Various Scheduling Policies (Synthetic Benchmark)

Scalability Study with State-of-the-Art Systems (UTS Benchmark)

Thread Migration Capability and Futures (LCS Benchmark)

Conclusion and Future Work

Synthetic Benchmark

• Recursive parallel-for benchmark (RecPFor)

• Two-way divide-and-conquer + parallel for

loop at each recursion

• Common pattern for many

divide-and-conquer algorithms

– e.g., quicksort, tree construction (kdtree,

decision tree)

• Each leaf task spins for 10 `B (" = 10`B)

RecPFor(int n) {

if (n == 1) {

compute(M); // run for duration of M

} else {

for (int k = 0; k < 5; k++) {

parallel_for (int i = 0; i < n; i++)

compute(M); // run for duration of M

}

thread th = spawn([=] { RecPFor(n/2); });

RecPFor(n/2);

th.join();

}

}

18 / 24

Synthetic Benchmark – Performance Analysis

System Steal Strategy Time

of

Outstanding

Joins

of Steals

(Successful)

Avg. Steal

Latency

(Successful)

Avg. Stolen

Task Size

IT
O
-A

Cont. Steal (greedy) 8.30 s 56876 474991 31.6 `s 1845 bytes

Cont. Steal (stalling) 8.33 s 72546 807097 30.4 `s 1790 bytes

Child Steal 9.31 s 3208417 6038858 29.3 `s 55 bytes

W
is
te
ri
a-
O Cont. Steal (greedy) 5.94 s 229154 1790018 20.4 `s 1139 bytes

Cont. Steal (stalling) 5.97 s 279035 3086034 20.6 `s 1156 bytes

Child Steal 7.69 s 8602558 15704498 19.9 `s 55 bytes

• We profiled the execution of the RecPFor benchmark (# = 222)

• ITO-A: 576 cores (16 nodes),Wisteria-O: 1728 cores (36 nodes)

Continuation stealing outperforms child stealing

(We will see a larger performance difference between stalling and greedy join in LCS)

Child stealing incurs a much larger number of outstanding joins

→ less parallelism available

An outstanding join is a join that

is blocked due to a steal event

Child Steal:

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

0

10k

20k

30k

40k

50k

Time (s)

of

 B
us

y
W

or
ke

rs

of

 O
ut

st
an

di
ng

 Jo
in

s

Cont. Steal (greedy):

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

0

10k

20k

30k

40k

50k

Time (s)

of

 B
us

y
W

or
ke

rs

of

 O
ut

st
an

di
ng

 Jo
in

s

Many idle workers

Many outstanding joins

→ less parallelism

• less parallelism→ larger number of steals

• Greedy join is the most efficient, as it can immediately resolve outstanding joins

• Cont. steal needs to copy the call stack→ larger stolen task size

• Nevertheless, the steal latency is only less than 20% longer than child stealing

Despite a small increase in steal latency, continuation stealing has an

overall performance benefit

19 / 24

Synthetic Benchmark – Performance Analysis

System Steal Strategy Time

of

Outstanding

Joins

of Steals

(Successful)

Avg. Steal

Latency

(Successful)

Avg. Stolen

Task Size

IT
O
-A

Cont. Steal (greedy) 8.30 s 56876 474991 31.6 `s 1845 bytes

Cont. Steal (stalling) 8.33 s 72546 807097 30.4 `s 1790 bytes

Child Steal 9.31 s 3208417 6038858 29.3 `s 55 bytes

W
is
te
ri
a-
O Cont. Steal (greedy) 5.94 s 229154 1790018 20.4 `s 1139 bytes

Cont. Steal (stalling) 5.97 s 279035 3086034 20.6 `s 1156 bytes

Child Steal 7.69 s 8602558 15704498 19.9 `s 55 bytes

• We profiled the execution of the RecPFor benchmark (# = 222)

• ITO-A: 576 cores (16 nodes),Wisteria-O: 1728 cores (36 nodes)

Continuation stealing outperforms child stealing

(We will see a larger performance difference between stalling and greedy join in LCS)

Child stealing incurs a much larger number of outstanding joins

→ less parallelism available

An outstanding join is a join that

is blocked due to a steal event

Child Steal:

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

0

10k

20k

30k

40k

50k

Time (s)

of

 B
us

y
W

or
ke

rs

of

 O
ut

st
an

di
ng

 Jo
in

s

Cont. Steal (greedy):

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

0

10k

20k

30k

40k

50k

Time (s)

of

 B
us

y
W

or
ke

rs

of

 O
ut

st
an

di
ng

 Jo
in

s

Many idle workers

Many outstanding joins

→ less parallelism

• less parallelism→ larger number of steals

• Greedy join is the most efficient, as it can immediately resolve outstanding joins

• Cont. steal needs to copy the call stack→ larger stolen task size

• Nevertheless, the steal latency is only less than 20% longer than child stealing

Despite a small increase in steal latency, continuation stealing has an

overall performance benefit

19 / 24

Synthetic Benchmark – Performance Analysis

System Steal Strategy Time

of

Outstanding

Joins

of Steals

(Successful)

Avg. Steal

Latency

(Successful)

Avg. Stolen

Task Size

IT
O
-A

Cont. Steal (greedy) 8.30 s 56876 474991 31.6 `s 1845 bytes

Cont. Steal (stalling) 8.33 s 72546 807097 30.4 `s 1790 bytes

Child Steal 9.31 s 3208417 6038858 29.3 `s 55 bytes

W
is
te
ri
a-
O Cont. Steal (greedy) 5.94 s 229154 1790018 20.4 `s 1139 bytes

Cont. Steal (stalling) 5.97 s 279035 3086034 20.6 `s 1156 bytes

Child Steal 7.69 s 8602558 15704498 19.9 `s 55 bytes

• We profiled the execution of the RecPFor benchmark (# = 222)

• ITO-A: 576 cores (16 nodes),Wisteria-O: 1728 cores (36 nodes)

Continuation stealing outperforms child stealing

(We will see a larger performance difference between stalling and greedy join in LCS)

Child stealing incurs a much larger number of outstanding joins

→ less parallelism available

An outstanding join is a join that

is blocked due to a steal event

Child Steal:

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

0

10k

20k

30k

40k

50k

Time (s)

of

 B
us

y
W

or
ke

rs

of

 O
ut

st
an

di
ng

 Jo
in

s

Cont. Steal (greedy):

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

0

10k

20k

30k

40k

50k

Time (s)

of

 B
us

y
W

or
ke

rs

of

 O
ut

st
an

di
ng

 Jo
in

s

Many idle workers

Many outstanding joins

→ less parallelism

• less parallelism→ larger number of steals

• Greedy join is the most efficient, as it can immediately resolve outstanding joins

• Cont. steal needs to copy the call stack→ larger stolen task size

• Nevertheless, the steal latency is only less than 20% longer than child stealing

Despite a small increase in steal latency, continuation stealing has an

overall performance benefit

19 / 24

Synthetic Benchmark – Performance Analysis

System Steal Strategy Time

of

Outstanding

Joins

of Steals

(Successful)

Avg. Steal

Latency

(Successful)

Avg. Stolen

Task Size

IT
O
-A

Cont. Steal (greedy) 8.30 s 56876 474991 31.6 `s 1845 bytes

Cont. Steal (stalling) 8.33 s 72546 807097 30.4 `s 1790 bytes

Child Steal 9.31 s 3208417 6038858 29.3 `s 55 bytes

W
is
te
ri
a-
O Cont. Steal (greedy) 5.94 s 229154 1790018 20.4 `s 1139 bytes

Cont. Steal (stalling) 5.97 s 279035 3086034 20.6 `s 1156 bytes

Child Steal 7.69 s 8602558 15704498 19.9 `s 55 bytes

• We profiled the execution of the RecPFor benchmark (# = 222)

• ITO-A: 576 cores (16 nodes),Wisteria-O: 1728 cores (36 nodes)

Continuation stealing outperforms child stealing

(We will see a larger performance difference between stalling and greedy join in LCS)

Child stealing incurs a much larger number of outstanding joins

→ less parallelism available

An outstanding join is a join that

is blocked due to a steal event

Child Steal:

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

0

10k

20k

30k

40k

50k

Time (s)

of

 B
us

y
W

or
ke

rs

of

 O
ut

st
an

di
ng

 Jo
in

s

Cont. Steal (greedy):

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

0

10k

20k

30k

40k

50k

Time (s)

of

 B
us

y
W

or
ke

rs

of

 O
ut

st
an

di
ng

 Jo
in

s

Many idle workers

Many outstanding joins

→ less parallelism

• less parallelism→ larger number of steals

• Greedy join is the most efficient, as it can immediately resolve outstanding joins

• Cont. steal needs to copy the call stack→ larger stolen task size

• Nevertheless, the steal latency is only less than 20% longer than child stealing

Despite a small increase in steal latency, continuation stealing has an

overall performance benefit

19 / 24

Synthetic Benchmark – Performance Analysis

System Steal Strategy Time

of

Outstanding

Joins

of Steals

(Successful)

Avg. Steal

Latency

(Successful)

Avg. Stolen

Task Size

IT
O
-A

Cont. Steal (greedy) 8.30 s 56876 474991 31.6 `s 1845 bytes

Cont. Steal (stalling) 8.33 s 72546 807097 30.4 `s 1790 bytes

Child Steal 9.31 s 3208417 6038858 29.3 `s 55 bytes

W
is
te
ri
a-
O Cont. Steal (greedy) 5.94 s 229154 1790018 20.4 `s 1139 bytes

Cont. Steal (stalling) 5.97 s 279035 3086034 20.6 `s 1156 bytes

Child Steal 7.69 s 8602558 15704498 19.9 `s 55 bytes

• We profiled the execution of the RecPFor benchmark (# = 222)

• ITO-A: 576 cores (16 nodes),Wisteria-O: 1728 cores (36 nodes)

Continuation stealing outperforms child stealing

(We will see a larger performance difference between stalling and greedy join in LCS)

Child stealing incurs a much larger number of outstanding joins

→ less parallelism available

An outstanding join is a join that

is blocked due to a steal event

Child Steal:

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

0

10k

20k

30k

40k

50k

Time (s)

of

 B
us

y
W

or
ke

rs

of

 O
ut

st
an

di
ng

 Jo
in

s

Cont. Steal (greedy):

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

0

10k

20k

30k

40k

50k

Time (s)

of

 B
us

y
W

or
ke

rs

of

 O
ut

st
an

di
ng

 Jo
in

s

Many idle workers

Many outstanding joins

→ less parallelism

• less parallelism→ larger number of steals

• Greedy join is the most efficient, as it can immediately resolve outstanding joins

• Cont. steal needs to copy the call stack→ larger stolen task size

• Nevertheless, the steal latency is only less than 20% longer than child stealing

Despite a small increase in steal latency, continuation stealing has an

overall performance benefit

19 / 24

Synthetic Benchmark – Performance Analysis

System Steal Strategy Time

of

Outstanding

Joins

of Steals

(Successful)

Avg. Steal

Latency

(Successful)

Avg. Stolen

Task Size

IT
O
-A

Cont. Steal (greedy) 8.30 s 56876 474991 31.6 `s 1845 bytes

Cont. Steal (stalling) 8.33 s 72546 807097 30.4 `s 1790 bytes

Child Steal 9.31 s 3208417 6038858 29.3 `s 55 bytes

W
is
te
ri
a-
O Cont. Steal (greedy) 5.94 s 229154 1790018 20.4 `s 1139 bytes

Cont. Steal (stalling) 5.97 s 279035 3086034 20.6 `s 1156 bytes

Child Steal 7.69 s 8602558 15704498 19.9 `s 55 bytes

• We profiled the execution of the RecPFor benchmark (# = 222)

• ITO-A: 576 cores (16 nodes),Wisteria-O: 1728 cores (36 nodes)

Continuation stealing outperforms child stealing

(We will see a larger performance difference between stalling and greedy join in LCS)

Child stealing incurs a much larger number of outstanding joins

→ less parallelism available

An outstanding join is a join that

is blocked due to a steal event

Child Steal:

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

0

10k

20k

30k

40k

50k

Time (s)

of

 B
us

y
W

or
ke

rs

of

 O
ut

st
an

di
ng

 Jo
in

s

Cont. Steal (greedy):

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

0

10k

20k

30k

40k

50k

Time (s)

of

 B
us

y
W

or
ke

rs

of

 O
ut

st
an

di
ng

 Jo
in

s

Many idle workers

Many outstanding joins

→ less parallelism

• less parallelism→ larger number of steals

• Greedy join is the most efficient, as it can immediately resolve outstanding joins

• Cont. steal needs to copy the call stack→ larger stolen task size

• Nevertheless, the steal latency is only less than 20% longer than child stealing

Despite a small increase in steal latency, continuation stealing has an

overall performance benefit

19 / 24

Synthetic Benchmark – Performance Analysis

System Steal Strategy Time

of

Outstanding

Joins

of Steals

(Successful)

Avg. Steal

Latency

(Successful)

Avg. Stolen

Task Size

IT
O
-A

Cont. Steal (greedy) 8.30 s 56876 474991 31.6 `s 1845 bytes

Cont. Steal (stalling) 8.33 s 72546 807097 30.4 `s 1790 bytes

Child Steal 9.31 s 3208417 6038858 29.3 `s 55 bytes

W
is
te
ri
a-
O Cont. Steal (greedy) 5.94 s 229154 1790018 20.4 `s 1139 bytes

Cont. Steal (stalling) 5.97 s 279035 3086034 20.6 `s 1156 bytes

Child Steal 7.69 s 8602558 15704498 19.9 `s 55 bytes

• We profiled the execution of the RecPFor benchmark (# = 222)

• ITO-A: 576 cores (16 nodes),Wisteria-O: 1728 cores (36 nodes)

Continuation stealing outperforms child stealing

(We will see a larger performance difference between stalling and greedy join in LCS)

Child stealing incurs a much larger number of outstanding joins

→ less parallelism available

An outstanding join is a join that

is blocked due to a steal event

Child Steal:

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

0

10k

20k

30k

40k

50k

Time (s)

of

 B
us

y
W

or
ke

rs

of

 O
ut

st
an

di
ng

 Jo
in

s

Cont. Steal (greedy):

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

0

10k

20k

30k

40k

50k

Time (s)

of

 B
us

y
W

or
ke

rs

of

 O
ut

st
an

di
ng

 Jo
in

s

Many idle workers

Many outstanding joins

→ less parallelism

• less parallelism→ larger number of steals

• Greedy join is the most efficient, as it can immediately resolve outstanding joins

• Cont. steal needs to copy the call stack→ larger stolen task size

• Nevertheless, the steal latency is only less than 20% longer than child stealing

Despite a small increase in steal latency, continuation stealing has an

overall performance benefit

19 / 24

Outline

Background

Joining Threads over RDMA

Evaluation

Performance Analysis of Various Scheduling Policies (Synthetic Benchmark)

Scalability Study with State-of-the-Art Systems (UTS Benchmark)

Thread Migration Capability and Futures (LCS Benchmark)

Conclusion and Future Work

Unbalanced Tree Search (UTS) Benchmark

• A widely used benchmark to measure the load balancing capability of runtime systems

• X-axis: the number of processes, up to 110,592 cores (2304 nodes)

• Y-axis: throughput of the benchmark (higher is better)

• Our system could achieve 96.4% parallel efficiency on 110,592 cores

100 1K 10K 100K

100M

1G

10G

100G

Ours (T1WL)

Ours (T1XXL)

Ours (T1L)

of processes

Th
ro

ug
hp

ut
 (n

od
es

/s
)

Fig. Result on Wisteria-O

Settings:

• UTS counts the number of all nodes in an unbalanced tree in parallel

• Throughput: the number of counted nodes per second

• Ideal throughput (the straight line) is calculated by serial performance

• Tree sizes: T1L < T1XXL < T1WL

• Cont. steal (greedy join)

20 / 24

Comparison with Existing Bag-of-Tasks Runtimes in UTS

• Also compared our runtime with existing systems on ITO-A (with InfiniBand)

• Competitors: three state-of-the-art work-stealing systems based on bag-of-tasks

– Child stealing, no join primitive→ global termination detection is needed

• Our system and SAWS [Cartier+, ICPP ’21] → RDMA-based, good scalability

• Charm++ and X10/GLB→ no RDMA, worse scalability

100 1K 10K

100M

1G

10G

100G Ours (T1WL)

Ours (T1XXL)

Ours (T1L)

of processes

Th
ro

ug
hp

ut
 (n

od
es

/s
)

Fig. Our Runtime System

100 1K 10K

100M

1G

10G

100G SAWS (T1WL)

SAWS (T1XXL)

SAWS (T1L)

of processes

Th
ro

ug
hp

ut
 (n

od
es

/s
)

Fig. SAWS

100 1K 10K

1M

10M

100M

1G

10G

100G

Charm++ (T1WL)

Charm++ (T1XXL)

Charm++ (T1L)

of processes

Th
ro

ug
hp

ut
 (n

od
es

/s
)

Fig. Charm++

100 1K 10K

100M

1G

10G

100G X10 (T1WL)

X10 (T1XXL)

X10 (T1L)

of processes

Th
ro

ug
hp

ut
 (n

od
es

/s
)

Fig. X10/GLB

Summarizing, our system

• Has more general synchronization (join) and thread migration capability

• Performs as well as or even better than bag-of-tasks counterparts

21 / 24

Comparison with Existing Bag-of-Tasks Runtimes in UTS

• Also compared our runtime with existing systems on ITO-A (with InfiniBand)

• Competitors: three state-of-the-art work-stealing systems based on bag-of-tasks

– Child stealing, no join primitive→ global termination detection is needed

• Our system and SAWS [Cartier+, ICPP ’21] → RDMA-based, good scalability

• Charm++ and X10/GLB→ no RDMA, worse scalability

100 1K 10K

100M

1G

10G

100G Ours (T1WL)

Ours (T1XXL)

Ours (T1L)

of processes

Th
ro

ug
hp

ut
 (n

od
es

/s
)

Fig. Our Runtime System

100 1K 10K

100M

1G

10G

100G SAWS (T1WL)

SAWS (T1XXL)

SAWS (T1L)

of processes

Th
ro

ug
hp

ut
 (n

od
es

/s
)

Fig. SAWS

100 1K 10K

1M

10M

100M

1G

10G

100G

Charm++ (T1WL)

Charm++ (T1XXL)

Charm++ (T1L)

of processes

Th
ro

ug
hp

ut
 (n

od
es

/s
)

Fig. Charm++

100 1K 10K

100M

1G

10G

100G X10 (T1WL)

X10 (T1XXL)

X10 (T1L)

of processes

Th
ro

ug
hp

ut
 (n

od
es

/s
)

Fig. X10/GLB

Summarizing, our system

• Has more general synchronization (join) and thread migration capability

• Performs as well as or even better than bag-of-tasks counterparts

21 / 24

Outline

Background

Joining Threads over RDMA

Evaluation

Performance Analysis of Various Scheduling Policies (Synthetic Benchmark)

Scalability Study with State-of-the-Art Systems (UTS Benchmark)

Thread Migration Capability and Futures (LCS Benchmark)

Conclusion and Future Work

Preliminaries: Fork-Join and Futures

• Our thread implementation is not only for fork-join but also for futures

• Fork-join: a thread must be joined by its parent (parallelism is nested)

• Future: a thread (called future) can be joined at any point (not strictly nested)

• Our longest common subsequence (LCS) benchmark intensively uses futures

– It combines recursive space decomposition and futures to represent true task dependencies

– Lack of thread migration capability easily falls into bad load balancing in this benchmark

22 / 24

Results of the LCS Benchmark

• We compared three scheduling policies with different thread migration capabilities

• Child stealing: No thread migration

• Cont. Steal (stalling): Migration at steal

• Cont. Steal (greedy): Migration at steal + Migration at join

• Lack of either migration capability led to much worse performance (due to bad

load balancing)

Tab. Execution times with 576 cores (16 nodes).

Size Cont. Steal (greedy) Cont. Steal (stalling) Child Stealing

218 0.569 s 3.44 s 93.1 s

222 45.9 s 433 s 2.11 ×104 s

Settings:

• Run on 16 nodes of ITO-A

• Find an LCS length of #

1-byte characters (randomly

generated)

• Serial cutoff size: 29

23 / 24

Outline

Background

Joining Threads over RDMA

Evaluation

Performance Analysis of Various Scheduling Policies (Synthetic Benchmark)

Scalability Study with State-of-the-Art Systems (UTS Benchmark)

Thread Migration Capability and Futures (LCS Benchmark)

Conclusion and Future Work

Summary

Conclusion:

• We introduced an efficient RDMA-based greedy join implementation

• Despite a small increase in steal latency, continuation stealing has an overall

performance benefit in nested fork-join programs

• Thread migration (both continuation stealing and greedy join) is particularly important

for programs with a complicated dependency pattern

Future Work:

• Integrate with PGAS to handle global data

– Current system only allows function arguments and return values for data exchange

• Apply memory hierarchy-aware scheduling to improve data locality

– e.g., Almost Deterministic Work Stealing (ADWS) [Shiina and Taura, SC ’19 and TPDS ’22]

24 / 24

Our artifact is available at:

https://github.com/s417-lama/cluster22-contsteal-artifact

https://github.com/s417-lama/cluster22-contsteal-artifact

	Introduction
	Background
	Joining Threads over RDMA
	Evaluation
	Performance Analysis of Various Scheduling Policies (Synthetic Benchmark)
	Scalability Study with State-of-the-Art Systems (UTS Benchmark)
	Thread Migration Capability and Futures (LCS Benchmark)

	Conclusion and Future Work

