
Almost Deterministic Work Stealing
Shumpei Shiina, Kenjiro Taura

The University of Tokyo {shiina, tau}@eidos.ic.i.u-tokyo.ac.jp

Background – What is Task Parallelism?
Task parallelism is a form of parallelization done by specifying dependencies

between tasks. In task parallelism, you can create many tasks at any point in your

program, like Fig. 1. A computation of task parallelism is expressed in the form of

directly acyclic graph (DAG) as shown in Fig. 2. For example, we can simulate particle

interaction like smoothed particle hydrodynamics (SPH) (Fig. 4) in a straight-forward

way by traversing the octree (Fig. 5), as shown in Fig. 6.

Work Stealing 1is a popular scheduling strategy for task parallel programs. Workers

have their own queue and they execute tasks in it, and when tasks are exhausted,

they try to steal a task from other workers (Fig. 3). In random work stealing, workers

choose victims randomly, which leads to the data locality problem; that is, for

iterative applications, workers do not touch the same task at each iteration, and

workers in the same NUMA node do not execute tasks close in the DAG.

task_group tg;

tg.run([]{ ... });

tg.run([]{ ... });

tg.run([]{ ... });

tg.run([]{ ... });

tg.wait();

Fig. 1 TBB-like

fork-join notation Fig. 2 Directly Acyclic Graph (DAG) worker 0 worker 1 worker 2 worker 3

StealTask Queue

Task

Fig. 3Work Stealing

Fig. 4 2D dam breaking simulation with SPH Fig. 5 Octree

particle_interaction(node) {

if (node is leaf) {

Calculate particle interactions in node;

} else {

task_group tg(node.n_ptcls);
for (child in node.children) {

tg.run([]{particle_interaction(child);}, child.n_ptcls);
}

tg.wait();

}

}

Fig. 6 Pseudocode of calculation of particle interaction parallelized

by using fork-join model

Proposed Method – Almost Deterministic Work Stealing (ADWS)
We propose Almost Deterministic Work Stealing, which consists of

Deterministic Task Allocation and Hierarchical Localized Work

Stealing. We believe what we need is,

1. Easy fork-join programming interface,

2. Good data locality, and

3. Dynamic load balancing.

Although programmers have to explicitly specify the amount of work of

each task like Fig. 6, it is still an easy-to-understand fork-join program

(requirement 1.). Fig. 7 visualizes the distribution of tasks among 64

workers on the particle simulation in Fig. 4. Random work stealing (a)

and OpenMP dynamic (b) fullfill requirement 3., but not 2.. With

deterministic scheduling policy like deterministic task allocation (c),

requirement 2. is achieved, but not 3.. We can see that ADWS (d)

achieves both of requirements 2. and 3..

(a) Random Work Stealing (b) OpenMP dynamic

(c) ADWS (no steal) (d) ADWS

Fig. 7 Visualization of task distribution among 64 workers in particle simulation.

Deterministic Task Allocation
Recursively allocate tasks to each worker based on the amount of

work of each task spawned.

7 6 5 4 3 2 1 0

0

4 0

5 4 0 0

2 06 5

7 6 5 4 3 2 1 0

0

4 0

7 6 5 4 3 2 1 0

0

Fig. 8 An overview of the deterministic task allocation

Hierarchical Localized Work Stealing
Localize steals by managing steal ranges.

• Steal ranges are set during

deterministic task allocation

• Activated from bottom up

when tasks are exhausted

• Workers can steal tasks only

from the current steal range

[k, P − 1] [j, k] [i, j] [0, i]

 [j, P − 1] [0, j]

[0, P − 1]

0P − 1 k j i

Fig. 9 A tree of steal ranges

Evaluation
We implemented ADWS on MassiveThreads2 and conducted experiments in an environment of Tab. 1. The benchmarks are Heat2D and

matrix-multiplication (matmul), the result of which is shown in Fig. 10 and Fig. 11, respectively. We also implemented task parallel computation of

particle interaction in FDPS3 and compared its performance to the original one (Fig. 12). In all of these benchmarks, ADWS outperforms others.

of cores 64

of sockets 4

microarchitecture Skylake

model Xeon Gold 6130

frequency 2.1 GHz

L1 data cache 32 KB/core

L2 cache 1 MB/core

L3 cache 22 MB/socket

Tab. 1 Environment
 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70

S
p

e
e
d

u
p

of workers

Random WS
Hierarchical WS
ADWS (no steal)

ADWS

Fig. 10 Speedup of Heat2D (4096x4096)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 10 20 30 40 50 60 70

G
FL

O
P
S

of workers

Random WS
Hierarchical WS
ADWS (no steal)

ADWS

Fig. 11 GFLOPS of Matmul (4096x4096)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60 70

S
p

e
e
d

u
p

of workers

OpenMP dynamic
Random WS

Hierarchical WS
ADWS (no steal)

ADWS

Fig. 12 Speedup of particle interaction in

FDPS (N=138968)

1 R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded computations by work stealing,” J. ACM, vol. 46, no. 5, pp. 720–748, 1999
2 J. Nakashima and K. Taura, “MassiveThreads: A thread library for high productivity languages,” in Concurrent Objects and Beyond: Papers dedicated to Akinori Yonezawa on the Occasion of His 65th Birthday.
Springer Berlin Heidelberg, 2014, pp. 222–238.
3 M. Iwasawa, A. Tanikawa, N. Hosono, et al., “Implementation and performance of FDPS: A framework for developing parallel particle simulation codes,” Publications of the Astronomical Society of Japan, vol. 68,
no. 4, 2016.

