
Improving Cache Utilization of Nested Parallel
Programs by Almost Deterministic Work Stealing

Shumpei Shiina , Graduate Student Member, IEEE and Kenjiro Taura

Abstract—Nested (fork-join) parallelism eases parallel programming by enabling high-level expression of parallelism and leaving the

mapping between parallel tasks and hardware to the runtime scheduler. A challenge in dynamic scheduling of nested parallelism is how

to exploit data locality, which has become more demanding in the deep cache hierarchies of modern processors with a large number of

cores. This paper introduces almost deterministic work stealing (ADWS), which efficiently exploits data locality by deterministically

planning a cache-hierarchy-aware schedule, while allowing a little scheduling variety to facilitate dynamic load balancing. Furthermore,

we propose an extension of our prior work on ADWS to achieve better shared cache utilization. The improved version of the scheduler

is calledmulti-level ADWS. The idea is that only part of a computation whose working set size is small enough to fit into a shared cache

is scheduled by ADWS within the cache recursively, thus avoiding excessive capacity misses. Our evaluation on a benchmark of

parallel decision tree construction demonstrated that multi-level ADWS outperformed the conventional random work stealing of Cilk

Plus by 61% and it showed a 40% performance improvement over the previous ADWS design.

Index Terms—Dynamic load balancing, locality, nested parallelism, task parallelism, task scheduling, work stealing

Ç

1 INTRODUCTION

NESTED (fork-join) parallelism enables programmers to
write high-level code to express many parallel algo-

rithms, including parallel divide-and-conquer algorithms
(e.g., Quicksort). By using nested parallel constructs, we can
straightforwardly express the recursively nested parallelism
that is inherent in many parallel algorithms; at the same
time, we can achieve better composability of parallel pro-
grams by arbitrarily nesting parallelism. Because the run-
time system is responsible for mapping logically parallel
computations to physical processor cores, programmers do
not have to consider the actual mapping of computations,
which reduces the burden of parallel programming. More-
over, this programming style often leads to good data local-
ity, because the working set is divided into smaller ones as
a problem is recursively decomposed. A representative set
of algorithms that use this data locality property is known
as cache-oblivious algorithms [1], [2]. While these algorithms
are oblivious to specific cache hierarchies and sizes, they are
proved to have asymptotically optimal bounds on the num-
ber of cache misses. The key to cache-oblivious algorithms
is to organize data locality in a hierarchical way so that the
data locality matches any cache configuration, and many
parallel variants of cache-oblivious algorithms have been
developed by using nested parallelism [3], [4].

Nevertheless, it is challenging to exploit the data locality
of nested parallelism on the hierarchical caches of modern
CPU architectures. Work stealing [5]—presumably the most
widely used scheduling strategy for nested parallelism—is
known to efficiently utilize private caches [6] but not hierar-
chical caches. Even on a processor with a single shared cache
and multiple private caches, it has been reported [7] that
work stealing is not optimal for data sharing on a shared
cache, and that parallel depth-first (PDF) scheduling [8] outper-
formswork stealing. For deeper andmore complicated cache
hierarchies, however, neither work stealing nor PDF sched-
uling is optimal; accordingly, for arbitrary cache hierarchies,
space-bounded schedulers [4], [9], [10] have been proposed.

Another aspect of the data locality of nested parallelism is
that, when the same or similar computations are repeatedly
executed on the same working set, parallel sub-computa-
tions (i.e., tasks) at the same position in the task hierarchy are
likely to access the same data [6]. This finding is based on
the observation that many algorithms exhibit almost the
samememory access pattern for the same array across conse-
cutive iterations. Previous works have investigated this
direction: constrained work stealing [11] and LAWS [12], [13]
improve data locality by scheduling tasks somewhat deter-
ministically, but they are not designed for arbitrary cache
hierarchies. Space-bounded schedulers, on the other hand,
are designed for arbitrary cache hierarchies but do not
account for iterative data locality. To the best of our knowl-
edge, no scheduler has been designed for both iterative com-
putations and arbitrary cache hierarchies at the same time.

Hence, to fulfill both of these requirements, we introduce a
simpler and more straightforward approach, called almost
deterministic work stealing (ADWS). ADWS first deterministi-
cally maps tasks to processor cores so that the task hierarchy
matches the cache hierarchy, which enables exploitation of
data locality on hierarchical caches. This deterministic task
mapping also enables exploitation of data locality for iterative

� The authors are with the Department of Information and Communication
Engineering, Graduate School of Information Science and Technology,
University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan. E-mail: {shiina,
tau}@eidos.ic.i.u-tokyo.ac.jp.

Manuscript received 27 April 2022; revised 20 July 2022; accepted 28 July 2022.
Date of publication 3 August 2022; date of current version 23 August 2022.
This work was supported in part by JSPS KAKENHI under Grant 21J22305
and in part by NEDO Project under Grant JPNP16007.
(Corresponding author: Shumpei Shiina.)
Recommended for acceptance by S. Chandrasekaran.
Digital Object Identifier no. 10.1109/TPDS.2022.3196192

4530 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-9129-3448
https://orcid.org/0000-0002-9129-3448
https://orcid.org/0000-0002-9129-3448
https://orcid.org/0000-0002-9129-3448
https://orcid.org/0000-0002-9129-3448
https://orcid.org/0000-0001-5224-382X
https://orcid.org/0000-0001-5224-382X
https://orcid.org/0000-0001-5224-382X
https://orcid.org/0000-0001-5224-382X
https://orcid.org/0000-0001-5224-382X
mailto:shiina@eidos.ic.i.u-tokyo.ac.jp
mailto:tau@eidos.ic.i.u-tokyo.ac.jp

computations, because, at every iteration, data in the same
location is likely to be accessed by the same core. A limitation
of ADWS is that it requires programmers to specify hints on
the relative amount of work for each task. However, these
hints can be rough estimates, because ADWS also performs
dynamic load balancing to fix load imbalances derived from
the initial deterministic task mapping, which is why ADWS
stands for almost deterministic work stealing.

By leveraging the prior published version of ADWS [14],
this paper further extends ADWS to achieve better utiliza-
tion of shared caches. The problemwith the previous ADWS
design is that it does not facilitate shared cache reuse when
the overall working set size is much larger than the shared
cache sizes. Accordingly, when a set of cores sharing a cache
receives a task whose working set size is much larger than
the shared cache, parallel execution of its descendants may
result in a large number of capacity misses. In other words,
ADWS may cause many more shared cache misses that
would occur in serial execution, because cores sharing a
cache may execute almost independent parts of a problem,
so that almost no cache reuse is expected.

Such inefficiency in the use of shared caches is not spe-
cific to ADWS but also applies to work stealing and its var-
iants. To date, many approaches have addressed this issue,
including CATS [15] and space-bounded schedulers [4], [9],
[10], to name a few. By borrowing the underlying concept of
those approaches, we introduce a scheduling framework
called multi-level scheduling, which generalizes the concept
of two-level scheduling in the previous literature [12], [13],
[15], [16], [17]. Whereas the previous concept of two-level
scheduling assumed specific cache configurations and spe-
cific scheduling strategies, multi-level scheduling general-
izes the concept for any level of a cache hierarchy, with
arbitrary schedulers for each cache level. The idea of multi-
level scheduling is that, for each shared cache, the cores that
share it simultaneously execute only one task (and its
descendants) whose working set size is small enough to fit
into the shared cache, while leaving other tasks unsched-
uled. We assume that the working set size for each task is
given by the programmer as a hint. Once a task is assigned
to a shared cache, its descendants are scheduled recursively
to the children of the cache. For each cache level, we can
arbitrarily choose the scheduling policy to map tasks from
the parent cache to the children. By using the framework of
multi-level scheduling, we have straightforwardly devised
an extension of ADWS, called multi-level ADWS, in which
the previous version of ADWS (called single-level ADWS
here) is applied to each cache level. Other variants of multi-
level schedulers can also be considered by applying differ-
ent scheduling strategies to each cache level: for example,
we can considermulti-level work stealing, in which traditional
random work stealing is applied hierarchically.

To empirically study the performance of our approach,
we conducted a comprehensive performance analysis using
seven benchmarks on a two-socket Cascade Lake machine.
In this analysis, we compared five schedulers: single-level
WS (traditional random work stealing), single-level ADWS,
multi-level WS, multi-level ADWS, and a space-bounded
scheduler (a port of the implementation by Simhadri et al.
[18], [19]). The results show that multi-level ADWS outper-
formed the other schedulers on highly memory-bound

benchmarks over a wide range of working set sizes. Notably,
for decision tree construction with a large real-world dataset
having a size of about 2 GB, both single- and multi-level
ADWS outperformed Cilk Plus [20], a widely used tasking
runtime with single-level WS, by 15% and 60%, respectively.
These results also confirm the advantage of multi-level
ADWS over single-level ADWS. Moreover, multi-level
ADWS outperformed multi-level WS by 18%, which con-
firms the benefit of exploiting data locality for iterative com-
putations. Other experiments demonstrated that ADWS is
tolerant to load imbalances even when work hints are incor-
rect, and that NUMA local allocation policy can be exploited
by deterministic scheduling of ADWS.

2 BACKGROUND

In this section, we first introduce the preliminaries of sched-
uling for nested parallelism through an example of parallel
construction of a decision tree.

2.1 Motivating Example: Decision Tree
Construction

A decision tree can be constructed by a simple divide-and-
conquer algorithm, that can be straightforwardly parallel-
ized by nested fork-join constructs, as studied in [21]. This
paper assumes the CART [22] algorithm for binary classifi-
cation with continuous-valued attributes.

Fig. 1 shows a simplified algorithm for decision tree con-
struction. It receives training data (rows) as input, each row
of which consists of a class (0 or 1) and multiple attributes
with continuous values. The resulting decision tree is then
used to predict the class from given attributes. At line 7, the
rows are partitioned into two parts on the basis of bestSplit,
which specifies which column (attribute) is used to split the
rows, and its threshold. Then, the partitioned rows (rowsL
and rowsR) are used to recursively construct two subtrees,
which can be computed in parallel (line 8–9). These two par-
allel tasks are created by the spawn keyword, and the wait
for their completion is indicated by the sync keyword.

Before partitioning, bestSplit is chosen for the split with
the lowest value of the Gini impurity [22], where this choice
involves consecutive parallel computations (line 2–5). The
best split is first determined for each attribute (split at line 3)
and bestSplit is then chosen from among all the attributes.
This paper assumes that the best split for each attribute is
determined by constructing histograms [23], [24], as effi-
cient implementations such as LightGBM [25] do, rather

Fig. 1. Algorithm for parallel decision tree construction.

SHIINA AND TAURA: IMPROVING CACHE UTILIZATION OF NESTED PARALLEL PROGRAMS BYALMOST DETERMINISTIC WORK STEALING 4531

than by sorting the rows by each attribute. As a result, the
COMPUTEBESTSPLIT function at line 3 can be written as a sim-
ple, flat parallel loop (or parallel reduction) to construct a
histogram. The PARTITION function can also be parallelized
through double buffering as in Quicksort.

2.2 Nested Parallelism and Data Locality

Next, we discuss the basics of nested parallel computations
and their properties of data locality. Although we used the
spawn-sync style of Cilk [27], [28], [29] to express the fork-join
constructs in Fig. 1, in the following, we instead use the task
group constructs adopted by C++ library implementations
such as Intel TBB [26]. The notation and concept of tasks and
task groups are illustrated in Figs. 2 and 3, respectively. A
task is a series of computations that should occur sequen-
tially, and only one task (the root task) exists at the beginning.
A task can spawn child tasks by creating a task group. A task
group consists of any number of child tasks (A, B, C, and D in
Fig. 2a), and a program waits for the completion of child
tasks at the same time (tg.wait()). A task can sequentially
create multiple task groups, whose executions cannot over-
lap within a task (i.e., a new task group can be created only
after the previous one is completed, if it exists).

Fig. 4 shows an example of a computation graph for deci-
sion tree construction. As explained above, the procedure is
based on a two-way divide-and-conquer algorithm. In the
figure, the first (topmost) two flat parallel computations at
each recursion represent the graphs for finding the best split
(the COMPUTEBESTSPLIT function at line 3 in Fig. 1), assuming
only two attributes for each row. The third computation cor-
responds to partitioning (the PARTITION function at line 7),
after which two tasks are spawned and the trees are recur-
sively constructed. Note that this computation graph is

input-dependent and not known in advance: the computa-
tion graph is dynamically unfolded during execution.
Although the figure shows a graph that is well-balanced for
simplicity, in reality it can be highly unbalanced, depending
on the best split choice.

Fig. 4 also illustrates the data locality that resides in the
computation graph. Here, we introduce two types of data
locality: hierarchical data locality and iterative data locality.
Hierarchical data locality specifies multiple levels of data
locality in the task hierarchy: descendant tasks of the same
parent are likely to access the same subset of the data, as the
working set is usually decomposed recursively into smaller
ones. Iterative data locality occurs when the same or similar
parallel computations are repeatedly executed: tasks at the
same position in the graph are likely to access the same
data, as many algorithms exhibit almost the same memory
access pattern across consecutive iterations. In Fig. 4, the
tasks enclosed by the dashed line have hierarchical data
locality, because the data rows are recursively partitioned
into disjoint parts. In contrast, the tasks enclosed by the dot-
ted line have iterative data locality, which typically exists in
consecutive flat parallel loops, because tasks at the same
position tend to access the same rows across multiple itera-
tions. In the computations for finding the best split for each
attribute, a series of data is repeatedly accessed in the same
order.

2.3 Work Stealing

A task scheduler—which maps the tasks in a computation
graph to actual hardware—should respect both the hierar-
chical and iterative data locality explained above, but this is
challenging on the hierarchical caches of modern hardware.
For an example of a scheduler for nested parallelism, we
explain work stealing, which is arguably the most popular
scheduling strategy for nested parallelism.

A worker is a virtualized processor core (or a hardware
thread), which is typically substantiated as a kernel-level
thread. In this paper, we assume that as many workers as
the number of processor cores are created at the beginning
of execution. In work stealing, each worker is equipped
with a double-ended queue called a task queue, which stores
local tasks that are ready to execute. When a worker spawns
a new task, it may immediately execute the new task by

Fig. 2. Task group notation and its extension for ADWS.

Fig. 3. Concept of nested parallel computations.

Fig. 4. Example of a computation graph for decision tree construction.

4532 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

pushing the continuation of the current task into the local
task queue (called the work-first policy [29]). Alternatively, it
may continue to execute the current task by pushing the
new task into the queue (called the help-first policy [30])1.
When a worker has nothing to do (typically when an execut-
ing task is completed), it first tries to pop a ready task from
the local task queue. If the local task queue is empty, it tries
to steal a ready task from another worker’s task queue. The
victim for work stealing is chosen uniformly at random, an
approach that has been shown to have good asymptotic
bounds for space, execution time, and communication [5].

A thief steals a task from the other end of the queue for
local push/pop operations, so that it steals the oldest task in
the queue. This stealing strategy enables workers to steal
work at a large granularity and thus exploits hierarchical
data locality for private caches [6]. However, for deeper and
more complicated hierarchical caches, this strategy is sub-
optimal because a set of tasks sharing data locality may be
executed by workers that are distant in the cache hierarchy,
which results in many cache misses. In addition, work steal-
ing does not respect iterative data locality because of its ran-
domness [6]: cached data for previous iterations are un-
likely to be reused for successive iterations. Other schedu-
lers that have been proposed for hierarchical caches are
explained in detail in Section 7.

3 ALMOST DETERMINISTIC WORK STEALING

This section introduces almost deterministic work stealing
(ADWS), a task scheduler that is designed to address both
hierarchical and iterative data locality on arbitrary cache
hierarchies. This section is based on the content of our pre-
viously published paper [14], but it provides a more refined
explanation. The scheduling in ADWS is based on deter-
ministic task mapping but also performs dynamic load bal-
ancing to fix load imbalances, which is why we describe it
as almost deterministic.

3.1 Deterministic Task Mapping

ADWS first performs locality-aware task mapping by using
user-provided hints on the relative amounts of work for
each task. Fig. 2b shows the extension of the task group con-
structs for ADWS, which includes a few additional hints.
The required hints are ratios of work with respect to the

entire task group: w_all is for the total work for all tasks in
the task group, and w1, w2, w3, and w4 are for the work for
each task (the size parameter is used only for multi-level
scheduling introduced later in Section 4). The ratios do not
have to be absolute values as long as the ratios of w1, . . ., w4
to w_all are all correct.

Fig. 5 illustrates the deterministic taskmapping in ADWS.
We assume that workers that are close in the hardware topol-
ogy are numbered adjacently. The task tree is vertically
divided so that workers that are close work on tasks that are
close in the tree, thus respecting hierarchical data locality. To
exploit iterative data locality, the task mapping is generated
deterministically by recursively dividing distribution ranges
according to the ratios ofwork in each task group. A distribu-
tion range is represented as a range of workers ½x; yÞ, where x
and y are real numbers (x � y), and it is illustrated as a trian-
gle below a node (task) in the figure. First, the root task has a
distribution range ½0:0; P Þ, where P is the number of work-
ers, whichmeans that the descendants of the root task should
be uniformly distributed among all workers. When a new
task group is created, the current task’s distribution range is
divided according to the relative work for each child task,
and each child task is assigned the corresponding subdi-
vided distribution range. The endpoint values of the distri-
bution ranges can be real numbers rather than just integers;
that is, a boundary between distribution ranges can be in the
middle of a worker. The basic rule of scheduling is that a task
with range ½x; yÞ is assigned to worker bxc (where b. . .c
denotes the floor function), i.e., the rightmost worker in the
range shown in the figure. The numbers on the nodes in the
figure represent the assignedworkers.

To explain the detailed algorithm of ADWS, we first clas-
sify tasks into two types. A task with range ½x; yÞ is classified
as a cross-worker task if bxc 6¼ byc and as a non-cross-worker
task if bxc ¼ byc. Cross-worker tasks have higher priority
than non-cross-worker tasks, because their descendants
should be distributed to multiple workers as soon as possi-
ble. Task groups inherit the same distribution range from
the task that creates them, and we classify task groups into
cross-worker or non-cross-worker task groups, as well.
Next, suppose that worker i creates a cross-worker task
group; then, we further consider three kinds of tasks within
the task group, as illustrated in Fig. 6. The basic rules to
schedule these three kinds of tasks are as follows:

1) Tasks with range ½x; yÞ such that bxc > i are passed
to worker bxc. They can be cross-worker or non-
cross-worker tasks.

Fig. 5. Overview of deterministic task mapping in (single-level) ADWS with four workers. The nodes represent tasks, and the numbers on the tasks
indicate which workers will execute them. The triangles below the nodes represent the distribution ranges over the workers to which the tasks’
descendants will be distributed.

1. The work-first policy is also called the child-first policy or continua-
tion stealing, and the help-first policy is also called the parent-first policy
or child stealing.

SHIINA AND TAURA: IMPROVING CACHE UTILIZATION OF NESTED PARALLEL PROGRAMS BYALMOST DETERMINISTIC WORK STEALING 4533

2) A task with range ½x; yÞ such that bxc ¼ i and byc > i
is immediately executed by worker i. It is a cross-
worker task assigned to worker i, and it is guaran-
teed to be the only one for each cross-worker task
group.

3) Tasks with range ½x; yÞ such that bxc ¼ byc ¼ i are
executed later by worker i. They are non-cross-
worker tasks assigned to worker i.

Finally, we explain the algorithm for deterministic task
mapping, which is shown in Fig. 7. The INIT, RUN, and WAIT

functions correspond to those in the task group notation
shown in Fig. 2. When a task group is initialized, it is
assigned the total work for the group (according to a pro-
grammer’s hint) and the distribution range of the executing
task (line 16–18). The child tasks in the group are created
from left to right as shown in Fig. 6, and their distribution
ranges are divided and assigned at line 21–22. The worker
first migrates tasks of type (1) to the appropriate workers at
line 26. When the worker finds a task of type (2), it immedi-
ately executes it at line 26 and pushes the continuation of
the current task (Tcur) into the task queue. The continuation
left in the queue only contains tasks of type (3), which will
be executed later by the worker at line 26 in the work-first
manner.

After all the tasks of a task group are completed, the con-
tinuation of the parent task (Tcur) is returned to its owner
(line 31). This is because of the rule that cross-worker tasks
must be executed by their owner (i.e., worker bxc for cross-
worker tasks with range ½x; yÞ). A cross-worker task
returned to the owner is immediately executed by the
owner when it reaches a scheduling point (e.g., spawn, task
completion, or possibly preemption [31]), as it has the high-
est priority. Cross-worker tasks can be executed without
delay because at most one cross-worker task is executable
by the same worker simultaneously. The reason is that a
cross-worker task group can have only one child cross-
worker task that is owned by the same worker (i.e., the task
of type (2) in Fig. 6), and the parent cannot proceed until the
child has finished.

Following the algorithm for deterministic task mapping,
each worker executes its assigned tasks from left to right in
the figures. Fig. 8 illustrates the execution order for worker i.
First, worker i preferably executes cross-worker tasks, which
are the leftmost tasks in the figure; then, it executes the non-
cross-worker tasks that it created and those migrated from
other workers. In the implementation, each worker’s local
task queue is split into primary queues and migration queues,
which are further divided by task depth. This separation is
needed for the dynamic load balancing explained later in

Section 3.2. Basically, a worker’s primary queues are used
for storing non-cross-worker tasks that it creates2, while its
migration queues are for passing non-cross-worker tasks
across workers. The primary queues follow last-in first-out
(LIFO) order for ordinary push/pop operations, while the
migration queues follow first-in first-out (FIFO) order to pop
tasks that were migrated by other workers. As the primary
queues are checked before the migration queues in popping
a local task, the tasks in Fig. 8 are executed from left to right,
as the tasks T0; . . . ; T7 are numbered. This is almost the same
order as serial execution, which is assumed to be highly
tuned by programmers to achieve good cache perfor-
mance [7]. Hence, ADWS is considered to be private-cache-
friendly aswell as work stealing [6].

However, deterministic task mapping alone cannot
always provide a good schedule for tasks. That is, it can dis-
tribute tasks so that each worker’s work is well balanced,
but it does not guarantee that workers can proceed without
any stalls. Fig. 9 shows an example of execution stalls
caused by task dependencies. Following the left-to-right
execution policy, worker iþ 1 executes task 4 after tasks 1,
2, and 3, but worker i cannot proceed to the next task group
until task 4 is completed. Thus, worker i is stalled until
worker iþ 1 executes task 4, and subsequently, worker iþ
1 is stalled by the delayed tasks assigned to worker i. This
situation happens when task synchronization is frequent,
i.e., when tasks create multiple task groups sequentially.
Generally, it is hard to provide a good schedule that does
not cause any stalls due to task dependencies, because the
task graph is not known ahead of time: only the relative
amount of work for the tasks in each task group is known.
Our approach to solve this problem is to combine determin-
istic task mapping with the dynamic load balancing tech-
nique explained in the next section.

3.2 Dynamic Load Balancing

Dynamic load balancing in ADWS resolves both the execu-
tion stall problem explained above and load imbalances
that dynamically appear. A load imbalance can result from
the fluctuation of execution times (e.g., OS noise, frequency
scaling) and from imprecise work hints provided by pro-
grammers, as it is often hard (or even impossible) for them
to give a precise estimate for work. A naive approach to fix
such execution stalls and load imbalances would be to per-
form random work stealing when local tasks are exhausted,
but this could largely increase cache misses on hierarchical
caches by moving data across distant caches; moreover, a
steal can incur further steals, thus collapsing the task struc-
ture made by deterministic task mapping.

Instead, our approach is to localize the range of workers
for choosing a victim by using the task structure generated
by deterministic task mapping. The range of workers for
work stealing (called the steal range) changes during execu-
tion, depending on the completion status of cross-worker
task groups. Roughly speaking, the steal range is restricted
to a set of workers that are working on the same unfinished

Fig. 6. Classification of tasks in a cross-worker task group. (1) Tasks
passed to another worker (which can be either cross-worker or non-
cross-worker tasks). (2) Cross-worker task assigned to local worker i.
(3) Non-cross-worker tasks assigned to local worker i.

2. Note that T3 and T4 in Fig. 8 are in fact the continuations of T1 and
T0 respectively, but they are abstracted as non-cross-worker tasks,
because a continuation only spawns non-cross-worker tasks for the cur-
rent task group.

4534 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

cross-worker task group. For example, in Fig. 9, by restrict-
ing the steal range of worker i and iþ 1 to within the task
group of interest, worker i and iþ 1 will steal task 4 and 6
respectively, without stealing tasks outside this task group.

Specifically, to determine the steal range for each worker,
we use the tree of cross-worker task groups that is created
during deterministic task mapping. When a new cross-
worker task group is created, we assign to it a pointer to the
parent task group. Fig. 10 illustrates the tree of cross-worker
task groups, by omitting the non-cross-worker groups from
Fig. 5. Here, the tree nodes represent task groups rather
than tasks. The solid arrows point to the task groups having
the current steal ranges for each worker. They are chosen
from among the dominant task groups, which have triangles
below the nodes. A task group is dominant if it is a cross-
worker task group and at least one of its child cross-worker
tasks has already been completed. A worker i is dominated
by a dominant task group with the distribution range ½x; yÞ
if bxc � i < byc (worker byc is not dominated). The current
steal range of worker i is determined by the topmost domi-
nant task group that dominates worker i.

At an early stage of execution, every worker has its own
dominant task group that dominates only itself (Fig. 10a),
assuming that enough parallelism is provided. As tasks are
completed, the task groups that are close to the root become
dominant. In Fig. 10b, worker 1 still has its own dominant
task group, but its ancestor (with range ½0; 2:xÞ) already
dominates it; therefore, the current steal range of worker 1
is determined to be that of the ancestor. Every time a worker
tries to steal a task, it first checks whether any ancestor has
become dominant before performing a steal. This can be
done by traversing the cross-worker task groups from the
bottom up in the tree until reaching the root, which takes
time proportional to the tree depth at most. This cost will be
negligible in most cases, because it is incurred only when
work stealing is performed (cf. the work-first principle [29]).
Eventually, the root task group becomes dominant
(Fig. 10c), which is equivalent to traditional random work
stealing that targets all workers.

Once the current steal range of worker i is determined as
½x; yÞ (bxc � i < byc), it randomly chooses worker j from
bxc � j � byc (j 6¼ i) and tries stealing work from worker j.
To steal the rightmost task in figures, worker i first tries to
steal a task from the migration queues of worker j, and if it
fails, it tries to steal from the primary queues. As an excep-
tion, worker i should not steal tasks from the migration
queues of worker bxc and from the primary queues of
worker byc. This rule is to avoid stealing tasks outside the
topmost dominant task group. Tasks should not be stolen
from the migration queues of worker bxc, because it stores
tasks that were migrated from outside the steal range. Simi-
larly, tasks in the primary queues of worker byc are out of
the range ½x; yÞ. This is why we split the local task queue
into primary queues and migration queues. Note that, to
maintain this separation, the descendants of tasks that are
migrated to migration queues are pushed into the migration
queues unless stolen, and the same applies to primary
queues.

Furthermore, to avoid stealing tasks from outside the
topmost dominant task group, we also manage task depths
and separate primary and migration queues by task depth.
A task depth is used to distinguish between tasks from dif-
ferent cross-worker task groups, and a task depth is defined
as the depth of cross-worker task groups in the task hierar-
chy (the root depth is 0). Hence, when a non-cross-worker
task group is created, the task depth is not incremented.
Tasks inherit the depth of the parent task group, and tasks
at depth d are pushed into the primary or migration queue
at depth d, as illustrated in Fig. 8. Because the descendants

Fig. 7. Algorithm for deterministic task mapping in ADWS.

Fig. 8. Illustration of the task execution order for worker i in ADWS, with
the tasks numbered in that order. T0, T1, and T2 are cross-worker tasks
assigned to worker i. Non-cross-worker tasks generated by worker i (T3

and T4) are pushed into the local primary queues, and those from other
workers (T5, T6, and T7) are migrated to the migration queues. The pri-
mary and migration queues are separated by task depth.

Fig. 9. Example of execution stalls in the deterministic task mapping
of ADWS. The numbers in the nodes (tasks) represent the execution
order for each worker, and each one has the same amount of work.
The timelines show the timing of when the tasks are executed by
each worker. This example shows that even if the same amount of
work is allocated to each worker, execution stalls can happen
because of task dependencies.

SHIINA AND TAURA: IMPROVING CACHE UTILIZATION OF NESTED PARALLEL PROGRAMS BYALMOST DETERMINISTIC WORK STEALING 4535

of a non-cross-worker task have the same depth, they are
pushed into the same queue unless stolen. For example, the
descendants of T4 in Fig. 8 are pushed into the same pri-
mary queue at depth d. So as not to steal tasks from outside
a task group at depth d, we have to steal from queues whose
depth is greater than or equal to dwithin the steal range. If a
task is successfully stolen, the descendants of the task are
executed by the work-first policy and managed in the pri-
mary queue of the thief at the same depth.

As a summary of these scheduling rules in ADWS, Fig. 11
shows the algorithm to try to get a runnable task when a
worker has no work to do. It first checks the local primary
queues from the bottom up (line 33–35) and then checks the
local migration queues from the top down (line 36–38), so
that tasks are executed from left to right in Fig. 8. If no local
task is found, it then tries to steal work from the current steal
range. When a worker is not dominated by any task group, it
does not perform work stealing (line 40), which prevents
tasks migrated by deterministic task allocation from being
stolen too soon. When stealing a task, a worker first checks
the migration queues from the bottom up (line 44–46) and
then checks the primary queues from the top down (line 48–
50), which is the reverse order of local pop operations3, so
that the rightmost tasks are preferably stolen. Note that, in
an actual implementation, we can reduce the number of
queue checks by remembering which queues are empty. The
GETRUNNABLETASK function is repeatedly called in a worker’s
scheduler loop (spin loop) until it succeeds.

3.3 Issue of Shared Cache Utilization

The deterministic task mapping straightforwardly matches
the task hierarchy to the cache hierarchy so that adjacent
workers that are close in the hardware topology can exploit
hierarchical data locality; however, there is still room for
ADWS to further exploit hierarchical data locality on shared
caches. Let us consider a case inwhich a task group ismapped
to workers sharing a cache, and the descendants of the task
group access the same working set of data many times. Even
though the descendants are executed on the same cache, if the
working set size is larger than the capacity of the shared
cache, parallel execution of them can cause many capacity
misses. For a shared cache, it is often preferable to execute on
a small working set at the same time (cf. cache blocking in
general), so that the working set size does not exceed the

cache capacity. On the other hand, the deterministic task
mapping inADWSdivides thewhole computation graph ver-
tically and assigns tasks to workers in one go, so that the data
sharing amongworkers becomes asminimal as possible.

For the example of decision tree construction in Sec-
tion 2.1, suppose that the overall data (rows in Fig. 1) do not
fit into a shared cache, but the partitioned data for each sub-
tree (rowsL and rowsR) do fit into the shared cache. In this
case, parallel execution of the two tasks for constructing
subtrees would cause many more capacity misses than one-
by-one execution of them. Thus, if we execute one of the
two subtasks after the other one is completed, we can pro-
mote data reuse within each task on the shared cache, which
would naturally occur in serial execution.

4 MULTI-LEVEL SCHEDULING

To address the issue of shared cache utilization in ADWS,
we introduce multi-level scheduling, a generic scheduling
framework for promoting data reuse on shared caches. In
this section, before we introduce multi-level ADWS in Sec-
tion 5 by combining multi-level scheduling with ADWS, we
explain the design of multi-level scheduling, which is
orthogonal to that of ADWS. We borrow the idea of two-level
scheduling [12], [13], [15], [16], [17], which is designed for
specific hardware configurations and specific scheduling

Fig. 10. Tree of cross-worker task groups that is used for dynamic load balancing in ADWS. The nodes represent cross-worker task groups, with non-
cross-worker task groups omitted from Fig. 5. Dominant task groups are represented as nodes with triangles below. The solid arrows point to the top-
most dominant task group, which corresponds to the steal range for each worker.

Fig. 11. Algorithm for getting a runnable task in ADWS. This function is
repeatedly called in a scheduler loop until a task is successfully popped.

3. Steal and migration operations take place on a different side of
each queue than local push/pop operations, as illustrated in Fig. 8.

4536 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

strategies at each cache level, and we generalize it to a gen-
eral scheduling framework for arbitrary cache hierarchies
and arbitrary scheduling policies for each cache level.

The core idea of multi-level scheduling is to limit the
working set size of tasks that are simultaneously scheduled
on a shared cache so that it does not exceed the shared cache
capacity. Here, we require another hint provided by pro-
grammers; the working set sizes of task groups must be
known for performing multi-level scheduling. In multi-level
scheduling, when a task group that fits into a shared cache
is generated, it is assigned to the shared cache and executed
only by the workers sharing the cache. This assignment is
hierarchically applied to hierarchical caches with any num-
ber of cache levels. Although it may decrease the amount of
parallelism available to workers, it has the benefit of
increasing the shared cache utilization for memory-bound
programs in which each task group intensively reuses data
among its descendants.

4.1 Preliminaries

To explain the design of multi-level scheduling more specifi-
cally, we first model a cache hierarchy as a tree of caches [32].
We assume that leaf nodes are private caches (e.g., L1 caches)
and that the root node is the main memory, which is of infi-
nite size. Fig. 12 shows an example of such a tree of caches. A
cacheCl

i is identified by its cache level l and an index i among
the level-l caches. The root node (main memory) is denoted
by C0

0 , given that the root cache level is 0. Note that the cache
levels are numbered here in the reverse order of the preva-
lent naming convention for L1, L2, and L3 caches. A worker
Wk is pinned to the core with private cacheC2

k .
For multi-level scheduling, the working set sizes for task

groups must be known in advance. Existing studies have
also used hints on working set sizes to improve the schedul-
ing of nested parallel programs. For example, Chen et al.
[12], [13], [15] proposed an online profiling method to esti-
mate the working set sizes for iterative computations, and
space-bounded schedulers [4], [9], [10] use programmer-
provided hints on the working set sizes for each task. In this
paper, we adopt the latter approach for simplicity. Fig. 2b
shows the programming style of multi-level ADWS (which
will be introduced in Section 5), which requires a working
set size parameter (size) for each task group4, in addition
to the work hints for each task required by ADWS. Note
that multi-level scheduling itself does not require the work
hints. The working set size of a task group TG that is

specified by a programmer is denoted by SizeðTGÞ, and the
capacity of a cache C is denoted by CapacityðCÞ.

4.2 Design and Algorithm

In multi-level scheduling, tasks are cascaded from the top
down in the tree of caches. To explain the design and algo-
rithm of multi-level scheduling, we first focus on the sched-
uling between a level-l cache and its child caches at level
lþ 1. If the working set size of a task group is less than or
equal to the cache capacity, then the task group can be tied
to the cache. Once a task group is tied to a cache C, the task
group’s descendants are all executed by the workers shar-
ing C. At most one task group is tied to each cache simulta-
neously. While a task group is tied to cache Cl

i at cache level
l, the task group’s descendants are scheduled by the chil-
dren of Cl

i at level lþ 1. If a child cache Clþ1
j finds a task

group TG for which SizeðTGÞ � CapacityðClþ1
j Þ, then TG is

tied to Clþ1
j and scheduled recursively by the children of

Clþ1
j .
We can choose any strategy to schedule tasks among the

children of Cl
i. This is simplified by introducing cache lead-

ers and considering the scheduling among the cache leaders
at each cache level. Specifically, at most one of the workers
sharing a cache acts as its leader. At the beginning of execu-
tion, leaders are elected from the bottom up in the cache
tree; that is, the leader of a level-l cache is chosen from the
leaders of its children at level lþ 1. If a worker becomes the
leader at cache level l, it stops being the leader at level lþ 1.
Note that cache leaders can change during execution and
can be absent, and a worker can only be the leader of at
most one cache at a time. After the leader of the root cache
C0

0 is chosen, it starts to run the root task (or the main func-
tion). If a workerW is the current leader of cache Cl

i when it
encounters a task group TG such that SizeðTGÞ �
CapacityðCl

iÞ, then TG is tied to Cl
i. At the same time, W

stops being the leader of Cl
i and becomes the leader of the

next-level (lþ 1) cache to which W belongs. Then, the
descendants of TG are scheduled by the leaders of the chil-
dren of Cl

i. When TG is completed, the leader of Cl
i is

elected again from the leaders of the children of Cl
i.

Fig. 13 shows the algorithm for executing a task group
TG. The function EXECUTETASKGROUP is a wrapper for each
task group’s execution (i.e., child tasks of TG are spawned
and awaited at line 57 or line 60), which is independent of
the scheduling strategies for each cache level. All that must
be done is to determine whether to tie TG to the child cache.
The cache for which worker W is currently the leader is
retrieved by W.cache (line 54), and we denote it as C. If TG
is tied to C, then W stops being the leader of C and moves
on to the next cache level by becoming the leader of the

Fig. 12. Example of a tree of caches with 16 cores. A node denoted by Cl
i

is the level-l cache with index i, and one denoted by Wk is a worker that
is pinned to the core with private cache C2

k . Fig. 13. Algorithm for execution of a task group in multi-level scheduling.

4. The previous approaches [4], [9], [10], [12], [13], [15] assigned the
working set sizes to tasks, but this paper assigns them to task groups
instead.

SHIINA AND TAURA: IMPROVING CACHE UTILIZATION OF NESTED PARALLEL PROGRAMS BYALMOST DETERMINISTIC WORK STEALING 4537

child cache to which W belongs (line 56). TG is then sched-
uled among the leaders of the children of C (line 57). After
TG is completed, the worker executing the continuation of
TG (which may be different from the previous leader W)
becomes the leader of the parent cache C (line 58). On the
other hand, if TG is not tied to C, then W continues to
schedule TG among the leaders of the siblings of C at the
current cache level, and it remains the leader of C (line 60).

A task group tied to Cl
i is called a level-l leaf. A level-l leaf

fits into Cl
i, but its parent does not, assuming that Cl

i has the
same capacity for all i. In overviewing the scheduling at
cache level l, level-l leaves appear to be sequential tasks that
are scheduled by the sibling caches at level l. In fact, each
level-l leaf is scheduled by the workers sharing cache Cl

i in
parallel, but it appears to be executed sequentially by Cl

i, as
at most one level-l leaf is tied to a cache until it is completed.
Hence, the scheduling at cache level l can be abstracted as
the scheduling for level-l leaves among the leaders of the
level-l caches. In addition, as at most one level-l leaf is tied
to a cache at a time, we have only one root task for each level
of scheduling, which is the same situation as in ordinary
(single-level) schedulers for nested parallel computations.
Because of these characteristics, we can easily apply existing
schedulers for nested parallelism, such as work stealing and
ADWS, to each cache level in multi-level scheduling.

5 MULTI-LEVEL ADWS

By combining multi-level scheduling with ADWS, we intro-
duce multi-level ADWS. For clarity, we refer to the original
design of ADWS (introduced in Section 3) as single-level
ADWS. Multi-level ADWS is a multi-level scheduler whose
scheduling policy at each cache level is single-level ADWS.
The idea of multi-level ADWS is illustrated in Fig. 14, with
a cache hierarchy that corresponds to Fig. 12. When a level-l
cache encounters a level-l leaf while level-l leaves are being
scheduled by single-level ADWS among level-l caches, the
level-l leaf is passed to the next cache level lþ 1, and single-
level ADWS is applied recursively at level lþ 1.

A downside of multi-level scheduling is that even for
computations that are small enough to fit into entire caches,
they are scheduled in a multi-level way, thus causing load
imbalances. For example, if the overall working set of the
root task group fits into cache Cl

i, then only the workers
sharing Cl

i would work on it, which leaves workers outside
Cl

i idle. Hence, we introduce a technique called cache hierar-
chy flattening, in which part of the cache hierarchy is

logically flattened to single-level caches to enable the appli-
cation of single-level ADWS over them. The rationale for
this technique is that, when an overall working set fits into
an entire hierarchical cache, single-level ADWS can effi-
ciently exploit data locality, because the issue of shared
cache utilization (Section 3.3) does not apply.

We first explain the operation of cache hierarchy flattening
by using the example of a tree of caches in Fig. 12. For exam-
ple, if the overall working set size of the root task group is
less than or equal to the sum of the capacities of level-1 caches
C1

0 ; . . . ; C
1
3 , then the whole computation should be scheduled

by single-level ADWS over all workers; otherwise, the load
will not be well balanced. Accordingly, we flatten all of the
level-2 caches into single-level caches and apply single-level
ADWS over them (C2

0 ; . . . ; C
2
15). Moreover, cache hierarchy

flattening can be applied to a sub-computation for part of the
cache hierarchy. Suppose that C1

2 is assigned a cross-worker
task with range ½2:x; 4:0Þ, which means that C1

2 is responsible
for distributing tasks to C1

3 and to itself in ADWS at level 1.
When C1

2 encounters a task group TG such that SizeðTGÞ �
CapacityðC1

2Þ þ CapacityðC1
3Þ, the task group should be

scheduled by single-level ADWS over the children
C2

8 ; . . . ; C
2
15, rather than schedulingTG onlywithinC1

2 .

Fig. 15 shows the algorithm for cache hierarchy flattening
in a general case. If the distribution range ofTG is ½x; yÞ, then
the integer parts of this range are i ¼ bxc and j ¼ byc (line
63). First, we consider the total capacity of the caches within
the current distribution range, Cl

i; . . . ; C
l
maxði;j�1Þ (line 64)5. If

SizeðTGÞ is less than or equal to that total capacity, then the
total capacity of the children of Cl

i; . . . ; C
l
maxði;j�1Þ is further

checked (line 65–67). Here, DðC; lÞ denotes the set of level-l
caches that are descendants of cache C. This is repeated until
either the total capacity of the descendants becomes smaller
than SizeðTGÞ or the cache level reaches the maximum level
lmax . Then, if the next cache level lnext is updated, we flatten
the level-lnext caches under Cl

i; . . . ; C
l
maxði;j�1Þ and schedule

TG over them by single-level ADWS (line 68–71). Otherwise,
we continue to schedule TG at the current cache level with-
out flattening the caches.

Note that, even if we apply cache hierarchy flattening to
other scheduling strategies that are combined with multi-
level scheduling (e.g., multi-level work stealing), the benefit
is limited if the corresponding single-level scheduling is not

Fig. 14. Illustration of multi-level ADWS. In each case, the upper part
depicts level-1 caches, and the lower part depicts level-2 caches (corre-
sponding to Fig. 12). Level-1 leaves (enclosed by dotted lines) are
scheduled by ADWS among the level-1 caches, and each leaf is passed
to a level-2 cache. Its descendants are then scheduled recursively by
ADWS among the level-2 caches. Fig. 15. Algorithm for cache hierarchy flattening in multi-level ADWS.

5. We do not include Cl
j (j > i) in this range (indicated by the larg-

est index, maxði; j� 1Þ) because Cl
j can also assign a level-l leaf for

itself, which should be prioritized to cache hierarchy flattening by Cl
i.

4538 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

designed for hierarchical caches. For example, as conven-
tional randomwork stealingwould causemany cachemisses
on hierarchical caches because of its randomness, cache hier-
archy flattening for multi-level work stealing would also
cause many cache misses. On the other hand, multi-level
ADWS can benefit from cache hierarchy flattening because
single-level ADWS is already cache-hierarchy-aware, to
some extent, and it is therefore expected to perform well
over a wide range of working set sizes.

6 PERFORMANCE EVALUATION

To evaluate the performance of ADWS, we conducted
experiments with seven benchmarks. In short, our primary
findings in this section are as follows:

� ADWS outperforms other existing schedulers over a
wide range of working set sizes by improving cache
utilization. Multi-level ADWS reduces shared cache
misses and performs better than single-level ADWS
in many cases, but it has drawbacks of increased
core idle times and private cache misses (Section 6.3).

� ADWS is tolerant to load imbalances. Even when we
do not provide any work hints to ADWS and the
workload is highly unbalanced, it performs similarly
or better than random work stealing (Section 6.4).

� ADWS can take advantage of the NUMA local allo-
cation policy because of its deterministic scheduling.
By allocating physical memory to proper NUMA
nodes, ADWS can perform better than when the
NUMA interleave policy is adopted (Section 6.5).

6.1 Experimental Settings

For evaluation, we used a two-socket Cascade Lake machine
of the Oakbridge-CX supercomputer at The University of
Tokyo. Themachine’s configuration is summarized inTable 1.
Hyper-threadingwas disabled, while Turbo Boost and Trans-
parent Huge Pages (THP) were enabled. The -march=na-

tive option was not set for compiling scheduler code
because the resulting assembly included SIMD instructions,
which slowed down the CPU frequency.

For evaluation, we implemented five schedulers: single-
level WS (SL-WS)6, single-level ADWS (SL-ADWS), multi-
level WS (ML-WS), multi-level ADWS (ML-ADWS), and a
space-bounded scheduler (SB). All of these schedulers were
implemented on MassiveThreads [33], a lightweight user-

level threading library. We ported the SB implementation
published by Simhadri et al. [18], [19] to MassiveThreads.
We adopted the “SB-D” variant with a minor modification
to avoid lock contention, because in most cases it performed
better than the “SB” variant in their paper, which used cen-
tralized task queues. For SB parameters, we set s ¼ 0:5 and
m ¼ 0:2, which was the same setting as in their evaluation.
For SB only, we specified the working set sizes for tasks
rather than task groups to follow their implementation. To
validate the baseline performance of MassiveThreads, we
also compared it with the widely used tasking runtime Cilk
Plus [20] (the version shipped with GCC v7.5.0), because
both MassiveThreads and Cilk Plus adopt work-first ran-
dom work stealing by default; we thus expect that SL-WS
and Cilk Plus would perform similarly.

In all evaluations, as many kernel-level threads (workers)
as cores were created and pinned to cores by setting their
affinity. Unless explicitly noted, we set the –interlea-

ve=all option to the numactl command when running
the experiments, which mean that physical pages were
almost evenly distributed to all NUMA nodes. Serial execu-
tion times were measured with the –localalloc option
on a fixed core to avoid remote memory accesses. For each
measurement, we repeated the computation 11 times within
each program execution and omitted the first run (warm-
up). We also repeated the execution five times from the out-
side of the program; thus, we plotted the mean (geometric
or arithmetic mean depending on the context) of 50 runs in
total for each point.

To break down the schedulers’ execution times, we pro-
filed three metrics: the busy time, idle time, and overhead. The
busy time was the time during which a worker was execut-
ing a task, i.e., performing meaningful work in a benchmark
program. The idle time was the time during which a worker
was searching for ready tasks because no local task existed.
The overhead was the remaining time besides the busy time
and idle time, which was the overhead of the scheduler
itself. Because profiling incurs additional overheads, we
conducted profiling separately from the main evaluation.
As we did not modify Cilk Plus, we could not obtain a pro-
filing result for Cilk Plus.

We also profiled cache miss counts by using the perfor-
mance monitoring units (PMUs) in the Intel processors.
Instead of command-line perf, we directly called the per-

f_event_open() Linux system call from the benchmark
programs to avoid counting unnecessary events (e.g., opera-
tions at initialization) and to profile each repetition separately.
For private caches, we counted L2 misses by monitoring the
L2_RQSTS.MISS event [34]. For shared caches, we counted
L3 misses by monitoring the LLC_LOOKUP.ANY event7 in
uncore Caching/Home Agent (CHA) units [35]. All of these
events count the total number of cache replacements, includ-
ing data reads, writes, and prefetches.

6.2 Benchmarks

We used seven benchmarks to evaluate the performance of
the schedulers. Each benchmark is explained in the following.

TABLE 1
Experimental Environment

CPUmodel Intel Xeon Platinum 8280 (Cascade Lake)
of cores 56 (28 cores/socket � 2 sockets)
Frequency 2.7 GHz (Turbo 4.00 GHz)
L1 data cache 32 KB/core
L2 cache 1 MB/core
L3 cache 38.5 MB/socket
Compiler GCC v7.5.0 (-O3 -march=native)
OS CentOS Linux 7 (3.10.0-957.el7.x86_64)

6. WS denotes conventional random work stealing with the work-
first policy, which is the default scheduler of MassiveThreads.

7. With the register state of Cn_MSR_PMON_BOX_FILTER0.

state=0x1.

SHIINA AND TAURA: IMPROVING CACHE UTILIZATION OF NESTED PARALLEL PROGRAMS BYALMOST DETERMINISTIC WORK STEALING 4539

Recursive Repeated Map (RRM): This benchmark is a sim-
plified version of the artificial benchmark that was used in
the evaluation of SB [18], [19]. It takes an array of double-
precision floating-point numbers as input and logically
divides the array recursively into two subarrays. At each
recursion before dividing an array, a map function, which
just multiplies each element by a constant and adds the
product to itself, is applied to the array three times. Recur-
sion stops when the array size becomes smaller than 32 KB.
Each map function is also recursively parallelized until the
array size becomes smaller than 128 KB. An array is divided
in the ratio 1 : a at each recursion, where a is a work ratio
parameter, which determines how much the computation
graph is unbalanced.

Quicksort: This benchmark implements the well-known
divide-and-conquer Quicksort algorithm, by parallelizing
two recursive calls for the partitioned arrays. The partition
operation is also parallelized to increase the parallelism
through double buffering; thus, the total working set size is
double the input array size. As it involves parallel computa-
tions for an array before recursive parallel calls, the compu-
tation pattern is similar to that of RRM. The shape of the
computation graph depends on the input and the pivot,
which is chosen as the median of the first three elements in
our evaluation. The cutoff sizes for both recursion and parti-
tioning were 64 KB. Each element was a random double-
precision floating-point number.

KDTree: This benchmark constructs a kd-tree for randomly
generated three-dimensional points (double-precision). The
algorithm is similar to Quicksort and the computation graph
is also irregular. The pivot value is chosen as the median of
the first three values along an axis (x, y, or z) that is chosen in
a round-robin way at each recursion level. The algorithm
keeps creating tree nodes until the array size becomes smaller
than 4 KB. The cutoff sizes for both recursion and partitioning
were set to 64 KB. Compared to Quicksort, KDTree is more
memory-bound because the recursion in KDTree stops earlier
than in Quicksort, which reduces the amount of computation
permemory access.

Decision Tree: This benchmark is the same as that
explained in Section 2.1. We used the HIGGS dataset down-
loaded from the UCI machine learning repository [36],
which was published by Baldi et al. [37]. The task is binary
classification using 28 attributes of double-precision float-
ing-point numbers for each row. 500,000 out of 11,000,000
rows were used for testing data, and the other rows were
used for training data, which had a size of about 2 GB. The
performance evaluation accounted only for the training
time. For validation, we determined that our implementa-
tion achieved an accuracy of 72% for the testing data, while
the accuracy with random prediction was 52%. The maxi-
mum depth for a decision tree was set to 17, which achieved
the best accuracy when using all the training data. The cut-
off size for recursion was 64 KB, and that for parallel loops
and partitioning was 256 KB. The computation graph can be
irregular, but note again that Fig. 4 shows a well-balanced
graph for simplicity.

Matrix Multiplication (MatMul): This benchmark per-
forms multiplication of single-precision floating-point dense
matrices (SGEMM). The algorithm is based on cache-oblivi-
ous matrix multiplication for square matrices [38], which

recursively divides a square matrix into four submatrices.
The cutoff size for recursion was 64� 64, and the computa-
tion kernel was optimized by hand for 64� 64 matrices
with AVX-512 instructions. We added a padding of 128
bytes to each row to avoid cache conflict with matrices
whose size was a power of two, because this padding size
showed the best performance.

Heat2D: This benchmark is a simple five-point stencil
computation with double buffering, which is parallelized
by recursively dividing a square grid into four equally sized
subgrids. Heat2D has a high degree of iterative data locality
because the same computation is repeated across iterations,
whereas it does not have much hierarchical data locality
because tasks do not share much data with others within
each iteration. Thus, we cannot expect much cache reuse
when the overall working set does not fit into the whole
caches. The cutoff size for recursion was 64� 64. The execu-
tion time for 50 iterations was used for performance evalua-
tion. We added a padding of 256 bytes to avoid cache
conflict with matrices whose size was a power of two,
because this padding size showed the best performance.

SPH: This benchmark is a 3D dam-breaking simulation
using the smoothed particle hydrodynamics (SPH) method,
which calculates short-range particle interactions within an
effective radius. The SPH computation kernel refers to the
method by Becker and Teschner [39]. The implementation
was ported from FDPS [40], which is based on an octree [41]
to partition a 3D space and efficiently find the neighbors of
particles. The number of particles in an octree node was
given as roughly estimated work hints for ADWS, and the
working set size hints were calculated based on the number
of particles. The performance measurement included only
the force calculation part, which is straightforwardly paral-
lelized by traversing the octree, whereas other parts such as
tree building were excluded. Each leaf of an octree had at
most 32 particles, and the results were obtained as the exe-
cution times for five iterations.

6.3 Overall Performance Results

Fig. 16 shows the speedup on 56 cores compared with the
serial execution times (except for MatMul) for different
working set sizes. For MatMul, we plotted the FLOPS
instead of the speedup; the machine’s peak performance
was 8.6 TFLOPS (the CPU frequency while executing AVX-
512 instructions was 2.4 GHz). The work ratio parameter a
of RRM was set to 1.0, which generates a well-balanced
computation graph. Fig. 17 shows a breakdown of the exe-
cution times, and Fig. 18 shows the cache miss counts. For
each benchmark, the largest problem size, corresponding to
the rightmost point in Fig. 16, was used for the performance
analysis results shown in Figs. 17 and 18.

First, the performance of SL-WS and Cilk Plus was simi-
lar in most cases, which indicates that the baseline perfor-
mance of MassiveThreads was comparable to that of Cilk
Plus. This observation is also supported by Fig. 17, in which
the overhead of MassiveThreads is so small that only the
difference in scheduling decisions (rather than the over-
heads) affected the overall performance.

For small working set sizes less than the total L3 cache
size, ADWS outperformed the other schedulers on all of the

4540 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

benchmarks. In this range of working set sizes, ML-ADWS
performed almost the same as SL-ADWS because of the
cache hierarchy flattening. The performance improvement
of ADWS was outstanding for Heat2D, which showed
speedup by almost 80x at most by fully exploiting iterative
data locality through the deterministic scheduling. Such
super linear speedup was possible because parallel execu-
tion can use multiple L3 caches, whereas serial execution
can use only one L3 cache. The other schedulers based on
randomness for scheduling underperformed ADWS bec-
ause they could not exploit iterative data locality.

For large working set sizes in the RRM, KDTree, Decision
Tree, and MatMul benchmarks, the multi-level schedulers
outperformed their single-level counterparts. Notably, ML-
ADWS showed improvements over SL-ADWS of 21% on
MatMul with N ¼ 16384 and 40% on Decision Tree with full
training data. Compared with Cilk Plus, ML-ADWS
achieved 61% performance improvement on Decision Tree
with full training data. By examining Fig. 17, we can see
that ML-ADWS greatly reduced the busy times for these
benchmarks, which indicates that the cache utilization was
improved. This claim is also supported by the L3 cache miss
counts shown in Fig. 18: the multi-level schedulers incurred
many fewer L3 misses than the single-level schedulers.

Moreover, the numbers of L3 misses for the multi-level
schedulers were almost the same as in serial execution,
which indicates that these schedulers were nearly optimal
in terms of L3 cache misses. Performance improvements of
these benchmarks were due to better exploitation of hierar-
chical data locality by ML-ADWS; in contrast, cache misses
in Heat2D were not reduced because Heat2D has little hier-
archical data locality.

For Quicksort, however, the multi-level schedulers per-
formed worse than the single-level schedulers. The reason
is clearly apparent in Fig. 17: the idle times of the multi-level
schedulers were much longer than those of the single-level
schedulers. Fig. 18 shows that L3 misses were reduced with
the multi-level schedulers, but the effect of the idle times
was larger, which resulted in worse overall performance.
Accordingly, the characteristics of the benchmarks deter-
mined whether single- or multi-level scheduling was better.
We can also see increases in the idle times of the multi-level
schedulers on KDTree and Decision Tree, but the benefit of
improved cache utilization overwhelmed the side effect of
increased idle times, thus resulting in better overall perfor-
mance. The long idle times of the multi-level schedulers
were due to their design, in which only one level-l leaf at a
time could be tied to a cache Cl

i. In particular, in irregular

Fig. 16. Speedup (or FLOPS) on 56 cores with various working set sizes. Each vertical dashed line represents the total size of the system’s L3 caches
(38:5MB=socket� 2 sockets ¼ 77MB).

Fig. 17. Breakdown of the execution times profiled by the schedulers (corresponding to the rightmost points in Fig. 16).

SHIINA AND TAURA: IMPROVING CACHE UTILIZATION OF NESTED PARALLEL PROGRAMS BYALMOST DETERMINISTIC WORK STEALING 4541

computation, level-l leaves can sometimes be so small that
they expose little parallelism, which leads to underutiliza-
tion of the cores sharing Cl

i.
The SB scheduler was expected to be tolerant of increases

in the idle times in irregular computations, as discussed by
Blelloch et al. [4]. However, our evaluation results showed a
tradeoff between idleness and data locality in SB. The exe-
cution time breakdown (Fig. 17) shows that SB had shorter
idle times than the multi-level schedulers, but it also had
longer busy times. The cache miss counts (Fig. 18) show
that SB greatly reduced the number of L3 misses as com-
pared with the single-level schedulers, but it incurred more
L3 misses than the multi-level schedulers in most cases.
This was because SB tries to tie multiple tasks to a cache as
long as the total working size of the tied tasks is less than or
equal to the cache capacity. At the same time, however, the
granularity of tasks tied to caches becomes smaller to fill up
the remaining capacity of the caches, which reduces the
chance of cache reuse within each task, thus incurring more
L3 misses than with multi-level scheduling.

There was another tradeoff between private cache (L2)
misses and shared cache (L3) misses. The trend was that the
multi-level schedulers and SB incurred more L2 misses than
the single-level schedulers, but fewer L3 misses. As SL-WS
and SL-ADWS are designed so that each worker follows the
serial execution order as much as possible, both can exploit
data reuse that would occur naturally in serial execution,
which makes them private-cache-friendly. In contrast, the
shared-cache-aware schedulers (ML-WS, ML-ADWS, and
SB) are likely to disturb the serial execution order for each
worker so as to improve the shared cache utilization. Never-
theless, ML-ADWS had fewer L2 misses than ML-WS,
because ADWS could reduce the number of steals through
deterministic task mapping.

Comparison of the multi-level schedulers shows that
ML-ADWS consistently performed better than ML-WS on
RRM, KDTree, Decision Tree, and MatMul. All of these
benchmarks have, at each recursion level, consecutive paral-
lel computations whose data locality can be exploited by
deterministic scheduling. The most obvious example is the
Decision Tree benchmark (see Section 2.1), for which multi-
level ADWS showed a 16% performance improvement with
respect to multi-level WS with full training data.

Overall, ML-ADWS performed better than the other
schedulers on many benchmarks over a wide range of data
sizes, but for certain benchmarks, its performance was
degraded by increased idle times (Quicksort) or increased
L2 misses (SPH). These tradeoffs are imposed by the design
of multi-level scheduling to improve shared cache utiliza-
tion. Nevertheless, we can observe that either SL- or ML-

ADWS performed the best on all of the benchmarks: when
ML-ADWS did not perform well, SL-ADWS performed the
best, and vice versa. A solution to the tradeoff issue would
be to switch between SL- and ML-ADWS (perhaps partially
by cache hierarchy flattening) according to the workload
characteristics, such as the arithmetic intensity and the
amount of parallelism. Consideration of the workload char-
acteristics in addition to the programmer-specified working
set sizes for application of cache hierarchy flattening would
be an interesting future work.

6.4 Sensitivity to Imprecise Work Hints

In contrast to the above experiments in which appropriate
work hints are given for ADWS, in this section, we study
the performance of ADWS when work hints are imprecise
or unavailable. Here, we suppose that work hints are not
provided by programmers, and ADWS always guesses that
the child tasks in a task group have the same amount of
work. We first use the RRM benchmark to artificially gener-
ate unbalanced computation graphs by changing the work
ratio parameter a. Without work hints from programmers,
the work ratio of the two recursion calls in RRM is always
presumed to be 1 : 1, which is a random guess without a pri-
ori knowledge about work. Fig. 19 shows the performance
results of RRM when changing a, which divides an array in
the ratio 1 : a at each recursion. The y-axis represents perfor-
mance improvements over SL-WS, which was calculated by
1� T=TSL�WS, where T is the execution time of each sched-
uler, and TSL�WS is that of SL-WS. For comparison, it also
shows the performance results of SL- and ML-ADWS that
receive an appropriate work ratio of 1 : a, which were

Fig. 18. Cache miss counts profiled by perf system calls (corresponding to the rightmost points in Fig. 16).

Fig. 19. Sensitivity of imprecise work hints for various unbalanced com-
putation graphs. It shows performance improvements of the schedulers
over SL-WS on the RRM benchmark with various work ratios (a parame-
ter). In addition to the legends in Fig. 16, the performance of SL- and
ML-ADWS without work hints, which guess that the work ratio is 1 : 1, is
shown with the filled markers.

4542 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

plotted as the same, open markers as in Fig. 16, whereas
those without programmer-provided work hints were plot-
ted as filled markers.

The evaluation with the working set size of 64 MB
(Fig. 19a), which fits into the system’s L3 caches, shows that
ADWS outperformed the other schedulers when awas close
to 1. When the computation graph was highly unbalanced
(i.e., when awas far from 1), the performance of ADWS was
degraded when work hints were not provided, but it still
had better performance than SL-WS. For example, even
with a � 10 (i.e., when the work ratio 1 : 10 was assumed to
be 1 : 1), ADWS (without work hints) performed slightly
better than SL-WS. This result indicates that ADWS is toler-
ant to load imbalance, even when work hints are imprecise
or unavailable. This characteristic stems from the algorithm
of dynamic load balancing explained in Section 3.2, in
which ADWS localizes work stealing as much as possible
and automatically regresses to conventional random work
stealing when load imbalance is large. The evaluation with
the large working set size of 1024 MB (Fig. 19b) shows simi-
lar results, in which ML-ADWS (w/o work hint) performed
similarly to ML-WS when the computation graph is highly
unbalanced, which means that ADWS at each cache level
shortly regressed to conventional random work stealing
when a is far from 1.

Next, we study the performance of other benchmarks:
Quicksort, KDTree, Decision Tree, and SPH. We exclude
Matmul and Heat2D because the random guess for work
ratios is always correct for these benchmarks as their com-
putation pattern is regular. Fig. 20 highlights the changes
of performance of ADWS when work hints are not pro-
vided by programmers. In most cases, performance
improvements of ADWS (without work hints) over ADWS
(with work hints) were negative, which means that ADWS
cannot fully exploit data locality if precise work hints are
not provided. Nevertheless, the performance of ADWS
(even without work hints) was comparable to that of other
schedulers such as SL-WS. These results are consistent
with those of RRM (Fig. 19) in that the degree of perfor-
mance degradation was larger for working set sizes close
to the total L3 cache size (Fig. 20a; up to 35.8% in Decision
Tree) than for larger working set sizes (Fig. 20b; less than
10% performance drop). Note that the performance of ML-
ADWS in Decision Tree was unstable in Fig. 20a because
the working set size was slightly larger than the total L3
cache size (89 MB > 77 MB) and thus the number of L3-
leaf tasks was too small.

These results suggest that we can use ADWS as the
default scheduler for nested parallel computations even
without work hints provided by programmers. When a
well-balanced computation graph is given, there is a chance
to improve cache utilization by ADWS. On the other hand,
when the computation graph is highly unbalanced, it can
perform dynamic load balancing as well as conventional
random work stealing. While the previous section showed
that multi-level schedulers have several drawbacks, ADWS
itself is robust to load imbalance. In addition, if pro-
grammers can provide appropriate work hints, the perfor-
mance can be further improved.

6.5 NUMA Memory Policy for Deterministic
Scheduling

To this point, we used numactl –interleave=all com-
mand, which distributes physical pages to all NUMA nodes
as evenly as possible. However, by taking advantage of the
deterministic scheduling in ADWS, we can optimize the
memory mapping so that local memory accesses are
increased. In this section, we study the performance of
ADWS when the NUMA memory placement is properly
arranged for ADWS. To allocate memory to NUMA nodes
where the main computation will take place, we parallel-
ized the initialization of the working set (with a memory
access pattern that resembles the main computation) in each
benchmark, so that physical pages are mapped to proper
NUMA nodes by the first-touch policy8.

Fig. 21 shows performance comparison between the
NUMA interleave policy and the local allocation policy for
ADWS. The working set sizes are the largest sizes in Fig. 16.
For schedulers other than ADWS, we do not show the per-
formance with the local allocation policy because their
scheduling is not deterministic. Overall, SL-ADWS benefits
from the local allocation policy more than ML-ADWS,
because SL-ADWS causes more accesses to the main mem-
ory because of many L3 misses. Nevertheless, the perfor-
mance of ML-ADWS is improved by about 20% in RRM
and Heat2D, which are highly memory-bound and regular
computations. For MatMul, which computes C ¼ AB, we
could not see performance improvements because the mem-
ory access pattern for matrix A and B is not regular.

Fig. 20. Evaluation of ADWS when no work hints are available. The hatched bars represent the execution times of ADWS without any work hints,
along which the performance improvements over ADWS that was guided by programmers’ work hints are shown (we anticipate negative values for
performance improvements because no work hints were given).

8. In our experiments, to prevent physical pages from being dynam-
ically migrated by automatic NUMA balancing in Linux, we used mbind

() syscall to fix physical pages to specific NUMA nodes.

SHIINA AND TAURA: IMPROVING CACHE UTILIZATION OF NESTED PARALLEL PROGRAMS BYALMOST DETERMINISTIC WORK STEALING 4543

7 RELATED WORK

Conventional random work stealing [5] (explained above in
Section 2.3) has been shown to exploit hierarchical data
locality well on private caches [6], but not on shared caches.
The parallel depth-first (PDF) scheduler [8], [42] was one of
the earliest schedulers tailored for shared caches. The idea
is that all workers simultaneously execute tasks that are as
close as possible in depth-first order, i.e., an order similar to
that of serial execution. Variants of PDF schedulers, such as
AsyncDF [43], have also been proposed to reduce the over-
head with fine-grained parallelism. An experimental study
by Chen et al. [7] demonstrated that the PDF scheduler per-
forms better than work stealing on a shared cache. How-
ever, the PDF scheduler cannot well exploit hierarchical
data locality well on private caches, which has led to
research on schedulers for both private caches and a shared
cache. Narlikar [44] proposed a scheduler that combined
work stealing with the PDF scheduler, and Blelloch et al.
[17] proposed the Controlled-PDF scheduler. The Con-
trolled-PDF scheduler applied a specific case of multi-level
scheduling for two-level cache hierarchies with private
caches and a single shared cache, where the PDF scheduling
was applied at each level.

For machines with multiple shared caches, such as multi-
socket, multi-core architectures, Chen et al. [15] proposed
CATS, which introduced triple-level work stealing. Triple-
level work stealing is also a specific case of multi-level
scheduling for multi-socket, multi-core architectures, where
conventional work stealing is applied at each level. In
CATS, the working set sizes for each task are estimated by
online profiling for iterative computations. LAWS [12], [13]
is an improved version of CATS for NUMA architectures. It
incorporates an initial task mapping at the level of NUMA
nodes to promote local memory accesses. The initial task
mapping of LAWS is different from that of ADWS in that
the deterministic task mapping in ADWS can be applied to
every level of a cache in a more general, unified way,
whereas LAWS handles only NUMA nodes.

All of the above approaches assume specific hardware
configurations with a fixed number of cache levels. The
space-bounded (SB) scheduler [4], [9], [10] was proposed
for arbitrary cache hierarchies, and theoretical analysis was
provided. Simhadri et al. [18], [19] conducted the first exper-
imental analysis of the SB scheduler and showed that it
could reduce shared cache misses in practice. The idea of
the SB scheduler is similar to that of multi-level scheduling
in that it ties a task to a cache so that the task’s descendants

are executed only within that cache. On the other hand, the
SB scheduler differs from multi-level scheduling in that it
can tie multiple tasks to a cache as long as the tasks’ total
working set size does not exceed the cache capacity.
Accordingly, as indicated by Blelloch et al. [4], the SB sched-
uler is expected to be more robust than multi-level schedul-
ing against irregular computations, and our experimental
results confirmed that finding. However, our evaluation
also revealed that the SB scheduler caused more cache
misses than multi-level scheduling in practice. A variant of
the SB scheduler for programs with dynamic memory allo-
cation has also been studied [45]. Nevertheless, none of the
SB schedulers have addressed iterative data locality.

On the other hand, the issue of iterative data locality was
pointed out by Acar et al. [6], and they proposed locality-
guided work stealing to resolve the issue by setting an affinity
for each task. The affinity specifies the preferred places at
which a task should be executed, and many approaches
have adopted concepts that are similar to affinity [46], [47],
[48], [49], [50], [51], [52]. To determine the execution places,
some approaches [47], [48], [51] require programmer-speci-
fied hints about places, and Drebes et al. [49], [50] used data
dependency information obtained from a data-flow-based
parallel runtime system (OpenStream [53]). In contrast,
ADWS exploits iterative data locality through deterministic
scheduling, and the hints for ADWS are oblivious to hard-
ware-specific properties such as places.

Constrained work stealing [11] is also based on determin-
istic scheduling, in which the execution of nested parallel
programs is traced and replayed for iterative programs. It
utilizes a steal tree [54], which is a lightweight tracing mech-
anism for a work stealing schedule, and it allows for
dynamic work stealing in addition to replay to fix load
imbalances. However, because it uses conventional random
work stealing to schedule the first iteration, it does not con-
sider hierarchical data locality in deep cache hierarchies. In
contrast, ADWS addresses both hierarchical and iterative
data locality on arbitrary cache hierarchies in a unified way.

In addition, many studies have improved steal strategies
for work stealing without relying on any scheduling hints
by the programmer. Min et al. [55] proposed hierarchical vic-
tim selection, which attempts to steal from the nearest work-
ers in hierarchical order, and Drebes et al. [49] adopted a
similar approach in their system. Probability Work Stealing
(PWS), proposed by Quintin and Wagner [16], changes the
probability of choosing victims for stealing so that close
workers are preferably chosen as victims. These heuristic
methods can somewhat improve cache utilization, but the

Fig. 21. Performance comparison between the NUMA interleave policy and the local allocation policy with ADWS. Working set sizes correspond to
the rightmost points in Fig. 16. The performance improvements over the interleave policy are shown along with the hatched bars of the local alloca-
tion policy for ADWS.

4544 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

performance improvement is marginal as previously stud-
ied [14], [18], [19]. Quintin and Wagner [16] also proposed
Hierarchical Work Stealing (HWS), which is similar to the
multi-level scheduling applied in this paper but operates on
distributed memory. It splits tasks into global tasks, which
can be stolen across nodes, and local tasks, which can only
be stolen within a node. This idea of splitting tasks into two
levels on distributed memory was also studied in [56], [57].
HWS was designed to reduce stealing across nodes rather
than to limit the working set sizes for shared caches; accord-
ingly, not much improvement in cache utilization is
expected, because it determines global tasks on the basis of
their depths rather than the working set sizes.

8 CONCLUSION

In this paper, we introduced two variants of ADWS to
improve the cache utilization of nested parallel programs:
single-level and multi-level ADWS. Single-level ADWS is
based on a deterministic, cache-hierarchy-aware schedule
with a little scheduling variety to allow for dynamic load
balancing. Multi-level ADWS is built on single-level ADWS
and combined with multi-level scheduling, which is a gen-
eral scheduling framework for improving shared cache uti-
lization. Unlike existing schedulers, ADWS is designed to
exploit both hierarchical and iterative data locality on arbi-
trary cache hierarchies, while requiring some additional
hints by programmers.

Our empirical performance analysis demonstrated that
ADWS improved the cache utilization on many benchmarks
with nested parallelism over a wide range of working set
sizes. An interesting lesson that we learned from the experi-
ments is that there are performance tradeoffs between single-
and multi-level ADWS: multi-level ADWS incurs more pri-
vate cachemisses and longer core idle times, but it can greatly
reduce shared cache misses. Considering that either single- or
multi-level ADWS performed the best in almost all cases in
our experiment, an interesting research direction would be to
investigate automatic switching between single- and multi-
level ADWS through onlineworkload characterization.More-
over, we expect that the benefits of multi-level ADWS will be
further highlighted with deeper and more complicated mem-
ory hierarchies for which the cost of shared cache misses is
much more expensive, such as on distributed memory or
future processors.

ACKNOWLEDGMENTS

This article is based on results obtained from a project,
JPNP16007, commissioned by the New Energy and Indus-
trial Technology Development Organization (NEDO). This
research was conducted using the Fujitsu PRIMERGY
CX400M1/CX2550M5 (Oakbridge-CX) in the Information
Technology Center, The University of Tokyo.

REFERENCES

[1] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran,
“Cache-oblivious algorithms,” in Proc. IEEE 40th Annu. Symp.
Found. Comput. Sci., 1999, pp. 285–297.

[2] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran,
“Cache-oblivious algorithms,” ACM Trans. Algorithms, vol. 8,
no. 1, pp. 4:1–4:22, Jan. 2012.

[3] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri, “Low depth
cache-oblivious algorithms,” in Proc. 22nd Annu. ACM Symp. Par-
allelism Algorithms Archit., 2010, pp. 189–199.

[4] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and H. V. Simhadri,
“Scheduling irregular parallel computations on hierarchical
caches,” in Proc. 23rd Annu. ACM Symp. Parallelism Algorithms
Archit., 2011, pp. 355–366.

[5] R. D. Blumofe and C. E. Leiserson, “Schedulingmultithreaded com-
putations by work stealing,” J. ACM, vol. 46, no. 5, pp. 720–748,
Sep. 1999.

[6] U. A. Acar, G. E. Blelloch, and R. D. Blumofe, “The data locality of
work stealing,” in Proc. 12th Annu. ACM Symp. Parallel Algorithms
Archit., 2000, pp. 1–12.

[7] S. Chen et al., “Scheduling threads for constructive cache sharing
on CMPs,” in Proc. 19th Annu. ACM Symp. Parallel Algorithms
Archit., 2007, pp. 105–115.

[8] G. E. Blelloch, P. B. Gibbons, and Y. Matias, “Provably efficient
scheduling for languages with fine-grained parallelism,” J. ACM,
vol. 46, no. 2, pp. 281–321, Mar. 1999.

[9] R. A. Chowdhury, F. Silvestri, B. Blakeley, and V. Ramachan-
dran, “Oblivious algorithms for multicores and network of pro-
cessors,” in Proc. IEEE 24th Int. Parallel Distrib. Process. Symp.,
2010, pp. 1–12.

[10] R. A. Chowdhury, V. Ramachandran, F. Silvestri, and B. Blakeley,
“Oblivious algorithms for multicores and networks of processors,”
J. Parallel Distrib. Comput., vol. 73, no. 7, pp. 911–925, Jul. 2013.

[11] J. Lifflander, S. Krishnamoorthy, and L. V. Kale, “Optimizing data
locality for fork/join programs using constrained work stealing,”
in Proc. IEEE Int. Conf. High Perform. Comput. Netw. Storage Anal.,
2014, pp. 857–868.

[12] Q. Chen, M. Guo, and H. Guan, “LAWS: Locality-aware work-
stealing for multi-socket multi-core architectures,” in Proc. 28th
ACM Int. Conf. Supercomput., 2014, pp. 3–12.

[13] Q. Chen and M. Guo, “Locality-aware work stealing based on
online profiling and auto-tuning for multisocket multicore
architectures,” ACM Trans. Archit. Code Optim., vol. 12, no. 2,
pp. 22:1–22:24, Jul. 2015.

[14] S. Shiina and K. Taura, “Almost deterministic work stealing,” in
Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal., 2019,
pp. 1–6.

[15] Q. Chen, M. Guo, and Z. Huang, “CATS: Cache aware task-steal-
ing based on online profiling in multi-socket multi-core
architectures,” in Proc. 26th ACM Int. Conf. Supercomputing, 2012,
pp. 163–172.

[16] J.-N. Quintin and F. Wagner, “Hierarchical work-stealing,” in
Proc. 16th Eur. Conf. Parallel Process., 2010, pp. 217–229.

[17] G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons, V. Ramachandran,
S. Chen, and M. Kozuch, “Provably good multicore cache perfor-
mance for divide-and-conquer algorithms,” in Proc. 19th Annu.
ACM-SIAM Symp. Discrete Algorithms, 2008, pp. 501–510.

[18] H. V. Simhadri, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and A.
Kyrola, “Experimental analysis of space-bounded schedulers,” in
Proc. 26th ACMSymp. ParallelismAlgorithms Archit., 2014, pp. 30–41.

[19] H. V. Simhadri, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and A.
Kyrola, “Experimental analysis of space-bounded schedulers,”
ACM Trans. Parallel Comput., vol. 3, no. 1, pp. 8:1–8:27, Jun. 2016.

[20] C. E. Leiserson, “The cilk concurrency platform,” J. Supercomput-
ing, vol. 51, no. 3, pp. 244–257, Mar. 2010.

[21] G. J. Narlikar, “A parallel, multithreaded decision tree builder,”
CarnegieMellonUniversity, Tech. Rep. CMU-CS-98–184, Dec. 1998.

[22] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classifica-
tion and Regression Trees. Cambridge, MA, USA: CRC, 1984.

[23] K. Alsabti, S. Ranka, and V. Singh, “CLOUDS: A decision tree
classifier for large datasets,” in Proc. 4th Int. Conf. Knowl. Discov.
Data Mining, 1998, pp. 2–8.

[24] R. Jin and G. Agrawal, “Communication and memory efficient
parallel decision tree construction,” in Proc. SIAM Int. Conf. Data
Mining, 2003, pp. 119–129.

[25] G. Ke et al., “LightGBM: A highly efficient gradient boosting deci-
sion tree,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 3149–3157.

[26] J. Reinders, Intel Threading Building Blocks: Outfitting C for Multi-Core
Processor Parallelism. Chicago, IL, USA:O’ReillyMedia, Jul. 2007.

[27] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime
system,” in Proc. 5th ACM SIGPLAN Symp. Princ. Pract. Parallel
Program., 1995, pp. 207–216.

SHIINA AND TAURA: IMPROVING CACHE UTILIZATION OF NESTED PARALLEL PROGRAMS BYALMOST DETERMINISTIC WORK STEALING 4545

[28] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “ Cilk: An efficient multithreaded runtime
system,” J. Parallel Distrib. Comput., vol. 37, no. 1, pp. 55–69, Aug.
1996.

[29] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation
of the Cilk-5 multithreaded language,” in Proc. ACM SIGPLAN
Conf. Program. Lang. Des. Implementation, 1998, pp. 212–223.

[30] Y. Guo, R. Barik, R. Raman, and V. Sarkar, “Work-first and help-
first scheduling policies for async-finish task parallelism,” in Proc.
IEEE 23rd Int. Symp. Parallel Distrib. Process. Symp., 2009, pp. 1–5.

[31] S. Shiina, S. Iwasaki, K. Taura, and P. Balaji, “Lightweight pre-
emptive user-level threads,” in Proc. 26th ACM SIGPLAN Symp.
Princ. Pract. Parallel Program., 2021, pp. 374–388.

[32] B. Alpern, L. Carter, and J. Ferrante, “Modeling parallel com-
puters as memory hierarchies,” in Proc. IEEE Workshop Program.
Models Massively Parallel Comput., 1993, pp. 116–123.

[33] J. Nakashima and K. Taura, “MassiveThreads: A thread library for
high productivity languages,” Concurrent Objects Beyond, vol. 8665,
pp. 222–238, Jan. 2014.

[34] Intel 64 and IA-32 Architectures Software Developer’s Manual –
Volume 3B: System Programming Guide, Part 2, Intel Corpora-
tion, Nov. 2020.

[35] Intel Xeon Processor Scalable Memory Family Uncore Perfor-
mance Monitoring Reference Manual, Intel Corporation, Jul. 2017.

[36] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[37] P. Baldi, P. Sadowski, and D. Whiteson, “Searching for exotic par-
ticles in high-energy physics with deep learning,” Nature Com-
mun., vol. 5, no. 4308, pp. 1–9, 2014.

[38] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H.
Randall, “An analysis of dag-consistent distributed shared-mem-
ory algorithms,” in Proc. 8th Annu. ACM Symp. Parallel Algorithms
Archit., 1996, pp. 297–308.

[39] M. Becker and M. Teschner, “Weakly compressible SPH for free
surface flows,” in Proc. ACM SIGGRAPH/Eurograph. Symp. Com-
put. Animation, 2007, pp. 209–217.

[40] M. Iwasawa, A. Tanikawa, N. Hosono, K. Nitadori, T. Muranushi,
and J. Makino, “Implementation and performance of FDPS: A
framework for developing parallel particle simulation codes,”
Pub. Astronomical Soc. Jpn., vol. 68, no. 4, pp. 54:1–54:22, Jun. 2016.

[41] J. Barnes and P. Hut, “A hierarchical oðnlognÞ force-calculation
algorithm,”Nature, vol. 324, pp. 446–449, Dec. 1986.

[42] G. E. Blelloch and P. B. Gibbons, “Effectively sharing a cache
among threads,” in Proc. 16th Annu. ACM Symp. Parallelism Algo-
rithms Architectures, 2004, pp. 235–244.

[43] G. J. Narlikar and G. E. Blelloch, “Space-efficient scheduling of
nested parallelism,” ACM Trans. Program. Lang. Syst., vol. 21,
no. 1, pp. 138–173, Jan. 1999.

[44] G. J. Narlikar, “Scheduling threads for low space requirement and
good locality,” Theory Comput. Syst., vol. 35, no. 2, pp. 151–187,
Jan. 2002.

[45] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri, “Provably effi-
cient scheduling of dynamically allocating programs on parallel
cache hierarchies,” in Proc. IEEE 24th Int. Conf. High Perform. Com-
put., 2017, pp. 124–133.

[46] A. Robison, M. Voss, and A. Kukanov, “Optimization via reflec-
tion on work stealing in TBB,” in Proc. IEEE 22nd Int. Parallel Dis-
trib. Process. Symp., 2008, pp. 1–8.

[47] J. Deters, J. Wu, Y. Xu, and I.-T. A. Lee, “A NUMA-aware prov-
ably-efficient task-parallel platform based on the work-first
principle,” in Proc. IEEE Int. Symp. Workload Characterization, 2018,
pp. 59–70.

[48] Y. Guo, J. Zhao, V. Cave, and V. Sarkar, “SLAW: A scalable local-
ity-aware adaptive work-stealing scheduler,” in Proc. IEEE 24th
Int. Parallel Distrib. Process. Symp., 2010, pp. 1–12.

[49] A. Drebes, K. Heydemann, N. Drach, A. Pop, and A. Cohen,
“Topology-aware and dependence-aware scheduling and mem-
ory allocation for task-parallel languages,” ACM Trans. Archit.
Code Optim., vol. 11, no. 3, pp. 30:1–30:25, Aug. 2014.

[50] A. Drebes, A. Pop, K. Heydemann, A. Cohen, and N. Drach,
“Scalable task parallelism for NUMA: A uniform abstraction for
coordinated scheduling and memory management,” in Proc. Int.
Conf. Parallel Architectures Compilation, 2016, pp. 125–137.

[51] J. Maglalang, S. Krishnamoorthy, and K. Agrawal, “Locality-
aware dynamic task graph scheduling,” in Proc. IEEE 46th Int.
Conf. Parallel Process., 2017, pp. 70–80.

[52] V. Kumar, “PufferFish: NUMA-aware work-stealing library using
elastic tasks,” in Proc. IEEE 27th Int. Conf. High Perform. Comput.
Data, Analytics, 2020, pp. 251–260.

[53] A. Pop and A. Cohen, “OpenStream: Expressiveness and data-
flow compilation of openmp streaming programs,” ACM Trans.
Archit. Code Optim., vol. 9, no. 4, pp. 53:1–53:25, Jan. 2013.

[54] J. Lifflander, S. Krishnamoorthy, and L. V. Kale, “Steal tree: Low-
overhead tracing of work stealing schedulers,” in Proc. 34th ACM
SIGPLAN Conf. Program. Lang. Des. Implementation, 2013, pp. 507–518.

[55] S.-J. Min, C. Iancu, and K. Yelick, “Hierarchical work stealing on
manycore clusters,” in Proc. 5th Conf. Partitioned Glob. Address
Space Program. Models, 2011, pp. 1–10.

[56] Y. Wang et al., “An adaptive and hierarchical task scheduling
scheme for multi-core clusters,” Parallel Comput., vol. 40, no. 10,
pp. 611–627, Dec. 2014.

[57] J. Paudel, O. Tardieu, and J. N. Amaral, “On the merits of distrib-
uted work-stealing on selective locality-aware tasks,” in Proc.
IEEE 42nd Int. Conf. Parallel Process., 2013, pp. 100–109.

Shumpei Shiina (Graduate Student Member,
IEEE) received the BS and MS degrees from the
University of Tokyo, in 2019 and 2021, respec-
tively. He is currently working toward the PhD
degree with the University of Tokyo. His major
research interests include programming models
and runtime systems for task parallelism, mem-
ory management on distributed memory, and effi-
cient thread scheduling.

Kenjiro Taura received the BS, MS, and DSc
degrees from the University of Tokyo, in 1992,
1994, and 1997, respectively. He is currently a pro-
fessor in the Department of Information and Com-
munication Engineering, The University of Tokyo.
His major research interests include parallel/dis-
tributed computing and programming languages.
His expertise includes efficient dynamic load bal-
ancing, parallel and distributed garbage collection,
and parallel/distributedworkflow systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

4546 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

http://archive.ics.uci.edu/ml

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

