
Itoyori: Reconciling Global Address Space and
Global Fork-Join Task Parallelism

Shumpei Shiina

The University of Tokyo

Tokyo, Japan

shiina@eidos.ic.i.u-tokyo.ac.jp

Kenjiro Taura

The University of Tokyo

Tokyo, Japan

tau@eidos.ic.i.u-tokyo.ac.jp

ABSTRACT
This paper introduces Itoyori, a task-parallel runtime system de-

signed to tackle the challenge of scaling task parallelism (more

specifically, nested fork-join parallelism) beyond a single node. The

partitioned global address space (PGAS) model is often employed

in task-parallel systems, but naively combining them can lead to

poor performance due to fine-grained and redundant remote mem-

ory accesses. Itoyori addresses this issue by automatically caching

global memory accesses at runtime, enabling efficient cache sharing

among parallel tasks running on the same processor. As a real-world

case study, we ported an existing task-parallel implementation of

the Fast Multipole Method (FMM) to distributed memory with Itoy-

ori and achieved a 7.5× speedup when scaled from a single node to

12 nodes and up to 6.0× faster performance than without caching.

This study demonstrates that global-view fork-join programming

can bemade practical and scalable, while requiringminimal changes

to the shared-memory code.

CCS CONCEPTS
•Computingmethodologies→Distributed computingmethod-
ologies; Parallel computing methodologies.

KEYWORDS
PGAS, task parallelism, fork-join, work stealing, cache coherence

ACM Reference Format:
Shumpei Shiina and Kenjiro Taura. 2023. Itoyori: Reconciling Global Address

Space and Global Fork-Join Task Parallelism. In The International Conference
for High Performance Computing, Networking, Storage and Analysis (SC ’23),
November 12–17, 2023, Denver, CO, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3581784.3607049

1 INTRODUCTION
In order to effectively handle dynamic and irregular parallelism, par-

allel runtime systems have evolved over time to accommodate task

parallelism, more specifically, nested fork-join parallelism. Fork-

join parallelism enables the dynamic creation and arbitrary nesting

of parallel tasks, facilitating the clear and succinct representation

of dynamic and irregular parallel algorithms. The runtime task

scheduler, such as work stealing [16], takes the responsibility of

SC ’23, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0109-2/23/11.

https://doi.org/10.1145/3581784.3607049

assigning parallel tasks to processor cores, allowing programmers

to concentrate on expressing the inherent parallelism of algorithms

without needing to consider the underlying hardware details. Its

well-structured, compositional parallel primitives align well with

recursive fine-grained parallelism and yield good analytical proper-

ties [1, 16]. Runtime systems such as Cilk [15, 31], OpenCilk [62],

oneTBB (formarly Intel TBB [61]), and OpenMP [6] support fork-

join parallelism; however, most of them are designed for shared-

memory programming. Scaling fork-join programs from a single

node to distributed-memory clusters remains a challenge.

The challenge in distributed-memory fork-join parallelism is

two-fold: inter-node dynamic load balancing and remote memory

access. Inter-node dynamic load balancing, such as distributed work

stealing, has been intensively researched [3, 4, 20, 26, 27, 33, 50, 55,

65], with reported scalability reaching up to thousands of nodes [65].

Given that the nodes executing the tasks are determined at runtime,

it is natural to adopt a unified, global view of distributed memory.

This concept, known as a global address space, enables all tasks to

perceive the same global memory view, irrespective of the specific

nodes on which they are executed.

Thus far, researchers have investigated the integration of a global

address space and inter-node dynamic load balancing. An early at-

tempt involves combining fork-join parallelism and distributed

shared memory (DSM) [13, 14], which enables transparent access

to the global virtual address space. DSM systems typically provide

a software cache for remote memory access, and cache coherence

actions are performed by trapping memory protection faults for

transparency. However, DSM systems have generally not gained

widespread acceptance, likely due to their performance penalty

resulting from their too strict constraints. Instead, the partitioned

global address space (PGAS) model [21–23, 28, 44] has emerged,

offering programmers increased programmability to optimize per-

formance. In contrast to DSM systems, PGAS systems necessitate

the use of explicit APIs for global memory access in order to distin-

guish it from local memory access. The majority of existing PGAS

systems are designed for the Single Program Multiple Data (SPMD)

model, wherein the programmer is responsible of mapping compu-

tations to nodes. To the best of our knowledge, only a few PGAS

systems [50, 55] have been designed for the global fork-join model,

in which tasks are automatically load balanced by the runtime

system across node boundaries.

It is challenging, however, to reconcile the PGAS model and the

global fork-join model. The PGAS model is about distinguishing

between local and global data to optimize data movement, while

the very point of the global fork-join model is that tasks can move

across nodes for load balancing. For instance, even if two tasks that

access the same data are likely to be executed on the same node,

This work is licensed under a Creative Commons Attribution International
4.0 License.

https://doi.org/10.1145/3581784.3607049
https://doi.org/10.1145/3581784.3607049
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581784.3607049&domain=pdf&date_stamp=2023-11-11

SC ’23, November 12–17, 2023, Denver, CO, USA Shumpei Shiina and Kenjiro Taura

aggregating communication for them is difficult for programmers

because they could potentially run on different nodes. Consequently,

each task communicates independently for the data it uses, resulting

in fine-grained and redundant communication.

A viable solution to this issue is to incorporate a software cache

within the PGAS runtime. When a processor executes a set of par-

allel tasks that access adjacent or overlapping memory regions,

their memory accesses are likely to be cached in the local memory,

thereby reducing redundant communication. We consider this ap-

proach is effective because (1) most tasks usually do not migrate

when scheduled by work stealing if parallelism is sufficient [16,

31, 51], and (2) tasks that are close in the computation graph often

access the same data [1, 12]. This approach can be seen as a compro-

mise between DSM and PGAS, as it employs a software cache while

still requiring explicit APIs, although this idea is not novel. For ex-

ample, PGAS systems such as MuPC [75], Chapel [30], CLaMPI [25],

GAM [19], and Falcon [73] have implemented a software cache,

albeit not in the context of fork-join parallelism.

To demonstrate that the fork-join model can be effective even

on distributed memory with the help of software caching, we devel-

oped a new runtime system Itoyori1. We designed Itoyori to offer

a simple programming model and a portable implementation. It

provides a simple and compact set of APIs for basic fork-join opera-

tions and global memory access. Itoyori is implemented as a C++17

library, often referred to as a “compiler-free” PGAS library [32, 76].

For communication, it employsMPI-3 RMA [39] for enhanced porta-

bility, as also adopted by recent PGAS libraries [32, 35, 67]. The

tasking (threading) layer follows the uni-address scheme [3, 4, 65],

which enables dynamic suspension and migration of user-level

threads across nodes, thus realizing Cilk-like child-first work steal-

ing [15, 16] on distributed memory at the library level. These mi-

grating tasks access global memory through Itoyori’s PGAS APIs,

and global memory accesses are cached by the runtime.

Contributions. Unlike previous approaches that integrated the

PGAS and global fork-join model [50, 55], Itoyori was designed

with software caching in mind, which differentiated its APIs and

implementation from theirs. Specifically, this paper introduces:

• New PGAS APIs designed for space-efficient access to cached

global data, called checkout/checkin APIs (Section 3). They are de-

signed to avoid creating unnecessary copies by directly exposing

the runtime-managed cache memory to the user, which is impos-

sible in the conventional GET/PUT APIs. Programmability is also

improved by supporting unified virtual addresses for both local and

global memory, as detailed in Section 3.2.

• Afixed-size, private cache implementation for checkout/checkin

APIs (Section 4). Although the checkout/checkin APIs are designed

to enable the possibility of exposing a shared cache to multiple cores

within the same node, this feature is not currently implemented

and beyond the scope of this paper.

• The cache implementation that adheres to the work-first prin-
ciple [31] (Section 5). This principle suggests that for efficient work-

stealing scheduler implementations, the overhead at each fork/join

should be moved to the less frequent work-stealing events. As such,

we aim to delay costly coherence actions (e.g., cache invalidation

1
Itoyori is the Japanese name of the fish “threadfin breams.” The latest version of

Itoyori is being developed at https://github.com/itoyori/itoyori.

and write-back) until work-stealing events occur. To achieve this

property, we designed an efficient cache coherence protocol that

leverages Remote Direct Memory Access (RDMA).

Our primary contribution in this paper is to show the practicality

of global-view fork-join programming using the Itoyori platform.

Specifically, we experimentally demonstrate the following:

• Software caching plays a key role in scaling the fork-join

model to distributed memory. We carried out experiments using

three applications (Cilksort, UTS-Mem, ExaFMM) that exhibit dy-

namic and irregular parallelism. On 36 nodes (1728 cores), caching

improved their performance by 1.4×, 6.9×, and 4.3×, respectively.
• Itoyori is notmerely a toy, but a practical system for distributed-

memory programming. As a real-world case study, we ported a fork-

join implementation of the Fast Multipole Method (ExaFMM) [69]

to distributed memory. Despite a few coding refinements and addi-

tional API calls, the primary structure of the fork-join algorithm,

centered on irregular tree-based computations, remained unchanged.

The Itoyori implementation exhibited a 7.5× speedup when scaled

from a single node to 12 nodes and displayed comparable perfor-

mance to a hand-optimized MPI implementation, highlighting its

high productivity and performance.

2 BACKGROUND
Before explaining the details of Itoyori, we givemore background on

fork-join parallelism and distributed work stealing (in Section 2.1)

and the PGAS model and systems (in Section 2.2).

2.1 Fork-Join Parallelism and Work Stealing
In this section, we first discuss the advantages of the fork-join

model with a program example of Cilksort [31], a recursive par-

allel merge sort algorithm. Figure 1 shows the Cilksort program

rewritten in C++ with Itoyori APIs. The program uses the span
container (C++20) to represent a contiguous memory region as a

pair of its address and size. The input spans are recursively divided

into smaller spans according to the divide-and-conquer strategy.

The cilksort() function takes two spans a and b and sorts the

elements in a by using b as a temporary buffer. First, it logically

splits both a and b into four equal-sized spans (line 8–13), each

of which is then sorted recursively in parallel (line 14–18). The

parallel_invoke() function forks multiple closures (lambda ex-

pressions) as parallel tasks and returns control when all these tasks

are joined. After sorting for the four spans is completed, two pairs

of them are merged into the temporary buffers in parallel (line 19–

21). Then, they are merged into the original span a (line 22). The
recursion continues until the span becomes sufficiently small (less

than the cutoff value) and then switches to the serial quicksort

algorithm (line 4–6). The details for the checkout/checkin calls and

cilkmerge() will be explained later.

As shown above, the fork-join model allows for the concise and

high-level expression of parallel algorithms. Parallel constructs

(such as parallel_invoke()) can be nested arbitrarily, allowing

spawning numerous parallel tasks regardless of the actual hardware

parallelism. This is made possible by the runtime task scheduler,

which maps parallel tasks to the processor cores.

Work stealing [16] is arguably the most popular task scheduler

for fork-join parallelism. In work stealing, one worker is created per

https://github.com/itoyori/itoyori

Itoyori: Reconciling Global Address Space and Global Fork-Join Task Parallelism SC ’23, November 12–17, 2023, Denver, CO, USA

1 template <typename T>
2 void cilksort(span<T> a, span<T> b) {
3 if (a.size() < cutoff) {
4 checkout(a.data(), a.size(), mode::ReadWrite);
5 quicksort_serial(a);
6 checkin(a.data(), a.size(), mode::ReadWrite);
7 } else {
8 auto [a12, a34] = split_two(a);
9 auto [a1 , a2] = split_two(a12);
10 auto [a3 , a4] = split_two(a34);
11 auto [b12, b34] = split_two(b);
12 auto [b1 , b2] = split_two(b12);
13 auto [b3 , b4] = split_two(b34);
14 parallel_invoke(
15 [=]{ cilksort(a1, b1); }, // sort a1
16 [=]{ cilksort(a2, b2); }, // sort a2
17 [=]{ cilksort(a3, b3); }, // sort a3
18 [=]{ cilksort(a4, b4); }); // sort a4
19 parallel_invoke(
20 [=]{ cilkmerge(a1, a2, b12); }, // merge a1 and a2 -> b12
21 [=]{ cilkmerge(a3, a4, b34); }); // merge a3 and a4 -> b34
22 cilkmerge(b12, b34, a); // merge b12 and b34 -> a
23 }
24 }
25 template <typename T>
26 void cilkmerge(span<T> s1, span<T> s2, span<T> d) {
27 if (d.size() < cutoff) {
28 checkout(s1.data(), s1.size(), mode::Read);
29 checkout(s2.data(), s2.size(), mode::Read);
30 checkout(d.data() , d.size() , mode::Write);
31 merge_serial(s1, s2, d);
32 checkin(s1.data(), s1.size(), mode::Read);
33 checkin(s2.data(), s2.size(), mode::Read);
34 checkin(d.data() , d.size() , mode::Write);
35 } else {
36 size_t p1 = (s1.size() + 1) / 2;
37 size_t p2 = binary_search(s2, &s1[p1 - 1]);
38 auto [s11, s12] = split_at(s1, p1);
39 auto [s21, s22] = split_at(s2, p2);
40 auto [d1 , d2] = split_at(d , p1 + p2);
41 parallel_invoke(
42 [=]{ cilkmerge(s11, s21, d1); },
43 [=]{ cilkmerge(s12, s22, d2); });
44 }
45 }

Figure 1: Cilksort written with Itoyori in C++.

processor core or hardware thread, and each worker has its own

deque to store ready tasks. A worker pushes tasks to one end of the

local deque and pops tasks from the same end.When the local deque

is empty, a worker tries to steal a task from another worker’s deque,

which is chosen uniformly at random. Because a task is stolen

from the other end of the deque than local push/pop, the oldest

task in each deque is stolen. In systems such as Cilk, the newly

spawned task is immediately executed, pushing the continuation

of the current task to the local deque to make it stealable by other

workers. This policy is called the work-first or child-first policy and

known to have good asymptotic bounds on execution time, space,

communication [16], and data locality [1].

Recent advances in network interconnects, especially RDMA,

have motivated researchers to investigate efficient inter-node work

stealing [3, 4, 20, 26, 27, 33, 50, 55, 65]. However, many of these

implementations come with limitations. For example, some cannot

follow the child-first policy [33, 50, 55], and others only support the

bag-of-tasks model, where tasks have no dependencies [20, 26, 27].

Excluding language-level approaches [37, 60], to the best of our

knowledge, only the uni-address scheme [3, 4] supports the child-
first policy on distributed memory at the library level. The uni-

address scheme spawns tasks as user-level threads and enables dy-

namic migration of user-level threads across nodes. This is achieved

by dynamically copying call stacks of threads to other nodes while

preserving their virtual addresses on different processes. For the

child-first policy, its work-stealing scheduler steals the continu-

ation (call stacks) of threads in a fully one-sided (asynchronous)

manner by utilizing RDMA. As good scalability on over 100k cores

has been demonstrated [65], this strategy is considered viable even

on distributed memory. Due to these benefits, Itoyori’s threading

layer adopts the uni-address scheme.

2.2 The PGAS Model and Systems
The PGAS model provides a global view of distributed memory,

which we argue is appropriate for global fork-join parallelism. Al-

though there might not be a clear definition of PGAS, in this paper,

we define PGAS as a model that explicitly distinguishes between

global and local memory access, in contrast to DSM. To date, many

PGAS languages, such as Co-Array Fortran [57], Unified Parallel C

(UPC) [28], XcalableMP [47], Chapel [21], and X10 [23], and PGAS li-

braries, such as OpenSHMEM [22], Global Arrays [56], UPC++ [76],

DASH [32], and HPX [40]
2
have been developed. Some PGAS sys-

tems (e.g., X10, HPX) do not offer a direct way for accessing remote

memory; instead, they encourage to move computations to the data

owners (i.e., active messages). However, our focus is on PGAS sys-

tems that allow read/write operations to remote memory without

the use of active messages, because the task scheduler determines

the mapping of computations. The GET/PUT APIs are commonly

used in PGAS systems to copy data between global and local mem-

ory, although some PGAS languages (e.g., UPC, Chapel) implicitly

insert these APIs where global objects are dereferenced. Although

the details vary, the GET/PUT APIs typically appear as follows:

• void GET(gptr_t from_ptr, void* to_addr, size_t size);
• void PUT(void* from_addr, gptr_t to_ptr, size_t size);

They copy size bytes of data between the given local and global

memory. The local memory has to be pre-allocated at the user level.

The representation of global pointers (of type gptr_t) varies across
PGAS systems and is not necessarily raw virtual addresses.

Commonly, the user can specify the memory distribution policy

for global memory at the allocation time. Popular memory distri-

bution policies are block distribution, which distributes memory

evenly among the nodes so that each node’s memory is contiguous,

and block-cyclic distribution, which distributes fixed-size memory

chunks among nodes in a round-robin fashion. Most PGAS systems

have a way to directly access the local portions of global memory

determined by the memory distribution policy. This helps users

to follow the owner-computes rule [38] (i.e., the data owner node
should compute on the local data) for better performance.

Arguably, the owner-computes rule assumes SPMD and is dif-

ficult to apply to irregular parallelism. Nevertheless, systems in-

cluding Scioto [26], HotSLAW [50], Grappa [55], and extensions

2
HPX refers to its global address space as Active Global Address Space (AGAS) to
differentiate it from PGAS in that AGAS allows transparent relocation of global memory.

However, in this paper, we view it within a broader scope of PGAS.

SC ’23, November 12–17, 2023, Denver, CO, USA Shumpei Shiina and Kenjiro Taura

to X10 [59, 74] support inter-node work stealing to handle irregu-

lar parallelism under the PGAS model. However, for the reasons

mentioned in Section 1, they often incur fine-grained and redun-

dant communication for fine-grained parallelism. This situation

motivated us to investigate software caching techniques for PGAS.

3 ITOYORI PROGRAMMING MODEL
3.1 Overview
In this section, we explain the programming model of Itoyori, a C++

library over MPI-3 RMA (assuming the MPI_WIN_UNIFIED model).

Itoyori is composed of the threading layer and PGAS layer.

Itoyori assumes that one process is created for each core at

program startup. Thus, a worker corresponds to an MPI process.

Multiple kernel-level threads are not created within each process,

eliminating the need for the MPI_THREAD_MULTIPLE support inMPI.

This also means that a virtual address space is not shared among

processes on the same node. Nevertheless, they can access the same

physical memory through inter-process shared memory allocated

for global memory (see Section 4).

An Itoyori program begins with the SPMD mode, as launched

by the mpiexec command. Later, it can switch between the SPMD

region and fork-join region by spawning the root thread. In the

fork-join region, Itoyori can dynamically spawn user-level threads

by using low-level threading primitives such as futures (see [65]), or

high-level parallel constructs such as parallel_invoke() shown
in Figure 1. Itoyori also supports high-level parallel patterns for

range-based algorithms, similar to Intel TBB [61] and C++17 parallel

STL, although we do not cover the details in this paper.

As mentioned in Section 2.1, Itoyori’s threading layer employs

the uni-address scheme [3, 4]. The implementation is based on

our prior work [65], which uses MPI-3 RMA for fully one-sided

work stealing. As it supports thread migration during both fork

and join calls, the running process can change across fork-join

calls. While access to local variables in the current thread’s stack

remains valid even after migration, accessing local variables in other

threads’ stacks is prohibited. This restriction arises because the uni-

address scheme only copies the call stacks of the current thread

upon migration. Therefore, in Itoyori, any pointers or references to

local variables should not be passed to any other threads, including

parents and children.

Global objects are allocated/deallocated from the global heap

through PGAS APIs, which resemble typical malloc/free calls but

with an additional parameter of the memory distribution policy

(Section 4.2). The returned global addresses are merely raw, often

64-bit, virtual addresses. However, a program cannot directly access

the virtual addresses unless checkout/checkin calls are made for

the accessing region. A checkout call grants access to the requested

memory region until a checkin call is made for that region. In the

meantime, the region can be directly accessed with ordinary mem-

ory load/store instructions using the same virtual addresses. Also,

multiple processes can concurrently check out the same region,

provided that they ensure data-race-freedom.

Updates to global memory should be propagated to other pro-

cesses to ensure a consistent global view of memory. Itoyori’s mem-

ory consistency model is sequential consistency for data-race-free
programs (SC-for-DRF) [2], which is also used in many languages

A
dd

re
ss

Sp
ac
e

Global
Memory

Runtime
Cache

User
Memory

Local Memory
GET

PUT

GET

PUT

Communication
(if needed)

Memory Copy
(always)

(a) GET/PUT with a software cache.

A
dd

re
ss

Sp
ac
e

Global
Memory

Local
Memory

Checkout

Checkin

Communication
(if needed)

(b) Checkout/Checkin.

Figure 2: Cache management for different PGAS APIs.

such as C/C++11, Java, UPC [28], and Chapel [21]. SC-for-DRF is a

relaxed memory model that ensures well-defined memory order-

ing (sequential consistency) as long as a program has no data race.

Hence, in Itoyori, global memory access (i.e., checkout/checkin

calls) should be performed in a data-race-free manner. As Itoyori

currently does not support other synchronization primitives (e.g.,

locks) than fork-join, global memory updates are propagated by

following the fork-join relationships. Under this memory model,

cache coherence is properly managed by the runtime system.

3.2 Rationale of Checkout/Checkin APIs
Before getting into the details, we explain why we are introducing

new checkout/checkin APIs. Previous approaches added a soft-

ware caching layer without changing the conventional GET/PUT

APIs [19, 25, 30, 73, 75]. However, they have shortcomings in terms

of both efficiency and programmability.

First, GET/PUT APIs introduce unnecessary data copying be-

tween the runtime cache and user memory, given their semantics

of memory copying between the global and local memory. This

issue is depicted in Figure 2a. For instance, even if a GET request

results in a cache hit and thus omitting communication, the data

still needs to be copied from the runtime cache to the user mem-

ory. In contrast, checkout/checkin APIs simply require a unified

global address. This allows the direct exposure of the runtime cache

memory to the user without any redundant copying, as illustrated

in Figure 2b. In addition, even if a process checks out the same

or overlapping regions at the same time, it does not lead to any

space overhead. With this API design, a cache can be shared among

multiple processes within the same node in the future, although

this has not been implemented yet.

Similarly, GET/PUT APIs incur unnecessary data copying, even

when the requested global region is local. Although many PGAS

libraries offer global-to-local pointer conversion for portions of

global memory that are known to be local [22, 28, 32, 56, 76], this

feature assumes the SPMD model with no inter-node dynamic load

balancing. In scenarios with global task parallelism, programmers

would be required to insert a conditional branch for each global

memory access to check if the current process owns the data. This

is particularly difficult when the access region spans both local and

remote memory. Arguably, checkout/checkin APIs offer a much

Itoyori: Reconciling Global Address Space and Global Fork-Join Task Parallelism SC ’23, November 12–17, 2023, Denver, CO, USA

simpler and more straightforward interface, as they can be consis-

tently used for both global-to-local pointer conversion and remote

data access without any copying overhead.

From a programmability standpoint, checkout/checkin APIs al-

low a broader range of data types in line with C++ semantics. Since

GET/PUT calls essentially act as a memcpy() function, only “triv-

ially copyable” objects can be stored in global memory, as also noted

in the UPC++ documentation [7]. This implies that certain data

types, including vector containers, cannot be made global. This

limitation is an actual issue in ExaFMM (Section 6.4). In contrast,

checkout/checkin APIs neither create copies nor change the virtual

addresses of objects, which allows for nontrivially copyable types.

Admittedly, data are physically copied across nodes as raw bytes,

but from the perspective of programmers, this is not considered a

copy operation because virtual addresses are never changed (simi-

lar to how hardware caches work). In addition, checkout/checkin

APIs simplify array indexing by consistently preserving the virtual

addresses across their calls.

3.3 Programming with Checkout/Checkin APIs
With the above advantages in mind, this section explains how to

program with checkout/checkin APIs. Checkout/checkin APIs must

be called in pairs, and each pair requires the exact same arguments.

void checkout(void* addr, size_t size, Mode mode);
claims that the program will access the memory of the half-open re-

gion [addr, addr + size) in the specified access mode. The requested
memory region becomes accessible until checkin() is called for

that region. The mode can be either Read, ReadWrite, or Write. If
the mode is Read or ReadWrite, the system considers a read event

for [addr, addr + size) happens at this point and may fetch the lat-

est data from remote nodes. If the mode is Write (write-only access),
the region may be left uninitialized.

void checkin(void* addr, size_t size, Mode mode);
claims that access to the previously checked-out memory is com-

pleted. The arguments for addr, size, and mode must be exactly

the same as those passed to the previous, corresponding checkout
call. This checkin function should be called once and only once for

each checkout call as a pair. If the mode is ReadWrite or Write, the
system considers a write event for [addr, addr + size) happens at
this point, and this region is considered dirty.

Note that in the ReadWrite or Write mode, all bytes of the

checked-out data are considered dirty, even if the program did not

actually update the data. In other words, the access mode in Itoyori

is not like an access privilege, but more like memory load/store

operations. Thus, for example, always specifying the ReadWrite
mode is not a conservative approach; it is a data race if different pro-

cesses concurrently checks out the same region in the ReadWrite
mode, even if they do not actually write to the region.

As long as the program is data-race-free, multiple processes

can simultaneously check out the same region. In other words,

multiple processes can check out the same region only in the Read
mode; otherwise only one process can check out the region at the

same time. Within each process, multiple checkout requests can be

simultaneously made for the same region in any access mode, but

they must be checked in before program points where threads can

migrate (e.g., fork-join points as explained in Section 4.4).

RMA

Process 1 Process 2 Process 3 Process 4

Process 1

Cache Blocks

Global View and
Memory Mappings

Memory
Distribution

Home Blocks

Checkout/Checkin

Figure 3: Overview of memory management in Itoyori.

Figure 1 shows an example usage of the checkout/checkin calls

for Cilksort. At the cutoff of the recursion for cilksort() (line 4–6),
the span a is checked out in the read-write access mode. Similarly, at

the cutoff for cilkmerge() (line 28–34), the source memory (s1 and
s2) and the destinationmemory (d) are checked out in read-only and
write-only access mode, respectively. The cilkmerge() function
is also recursively parallelized by searching for an appropriate

point to split an array. Although not shown in the code example,

the binary search algorithm (line 37) internally performs sparse

memory access by checking out each element in the Read mode.

Because the (user-configurable) cache size is fixed in Itoyori, the

amount of memory that can be simultaneously checked out by each

process is limited. If it exceeds the cache size limit, a checkout func-

tion returns an error. For example, if a process sweeps over a large

global array that does not fit into the cache, it cannot check out the

entire array at once. Instead, it has to break checkout/checkin re-

quests into sufficiently small chunks and process each chunk in turn.

While this may seem cumbersome, the details can be abstracted

away by using high-level patterns for range-based operations (e.g.,

map, reduce). By using these high-level patterns, the system can

automatically determine proper chunk sizes. This design allows us

to easily handle huge data that do not fit into a single node.

4 SOFTWARE CACHE IMPLEMENTATION
This section explains the design and implementation of the cache

system of Itoyori. How to integrate it with distributed work stealing

is explained in Section 5.

4.1 Overview
To realize unified global addresses for the checkout/checkin APIs,

Itoyori preserves the same virtual address space as a global view for

each process and uses its addresses as global addresses. To limit the

physical memory usage, physical pages are dynamically mapped

to/unmapped from the global view on demand. Figure 3 illustrates

the virtual-to-physical memory mappings. The memory mappings

are updated at the granularity of memory blocks of fixed size (a

multiple of the system page size). The upper part of the figure

shows the global view and memory mappings to the two types of

physical memory blocks: home blocks and cache blocks. Home blocks

are the local portions of global memory and are mapped directly

to the corresponding virtual memory addresses. Cache blocks are

SC ’23, November 12–17, 2023, Denver, CO, USA Shumpei Shiina and Kenjiro Taura

used to store local copies of remote memory and mapped to the

global view on demand. Cache blocks can be remapped to other

locations when the memory is not being checked out. The number

of cache blocks is fixed in the current implementation and can be

configured by the user at program startup.

Physical memory blocks are allocated as POSIX shared mem-

ory with the shm_open() call. POSIX shared memory can be used

to dynamically change the virtual-to-physical memory mappings

with the mmap() call. In addition, this enables sharing of physical

memory blocks among intra-node processes, even though Itoyori

spawns one process per core. Home blocks are shared among intra-

node processes when created, so that they can be directly mapped

to each process’s global view. Therefore, processes can directly

access the home blocks owned by other processes within the same

node. Cache blocks are not shared in the current implementation,

so each process only has private caches.

4.2 Memory Distribution Policies
Itoyori extends the common malloc() interface so that the user

can specify a memory distribution policy. The policy is either one

of the collective policies or the noncollective policy.
Collective distribution policies are used to allocate a large amount

of memory that spans over multiple nodes. Itoyori currently sup-

ports the block and block-cyclic distribution policies (see Section 2.2)

as collective policies. The bottom part of Figure 3 shows the block-

cyclic distribution. For collective policies, the allocation and deal-

location function must be called collectively by all processes in

the SPMD region or the root thread. At the allocation time, the

same virtual address space of the requested memory size is newly

preserved in all processes, and physical home blocks are allocated

and exposed to other processes (calling MPI_Win_create()).
In contrast, the noncollective policy allows efficient fine-grained

memory allocation asynchronous to other processes, even in any

threads in the fork-join region. With the noncollective policy, mem-

ory objects are allocated from the local home blocks without the

involvement of any other process. The allocated memory can be

remotely accessed and freed by any process. Unlike collective poli-

cies, Itoyori pre-allocates a sufficiently large virtual address space

for noncollective allocation at program startup. This virtual ad-

dress space is divided evenly among all processes, and each pro-

cess allocates memory from its local portion. We can either pre-

allocate physical memory of fixed size at program startup (using

MPI_Win_create()) or dynamically attach physical memory as

the heap size grows (using MPI_Win_create_dynamic() and MPI_
Win_attach()) for noncollective allocation.

4.3 Global View Management
4.3.1 Checkout/Checkin Implementation. The primary task of the

checkout call is to fetch remote data to cache blocks and map them

to the global view. If cache blocks are already mapped and have

up-to-date data (i.e., not invalidated by the synchronization calls in

Section 4.4), it can skip communication and immediately return.

Figure 4 shows an implementation of the checkout/checkin APIs.

The MemBlock structure (line 1–7) is allocated for each physical

memory block. Both the Checkout and Checkin functions iterate

over the virtual memory blocks that overlap with the requested

1 Struct MemBlock

2 type :: HomeBlock | CacheBlock
3 physMem :: handler for physical memory allocated for this block.

4 addr :: virtual address to which this block should be mapped.

5 mappedAddr :: virtual address to which this block is now mapped.

6 validRegions :: set of up-to-date memory regions within this block.

7 refCount :: reference count for this block (default: 0).

8 Function Checkout(addr, size,mode)
9 memBlocksToMap← {}

10 for mbID← ⌊addr/MBSize⌋ to ⌈ (addr+size)/MBSize⌉ − 1 do
11 mb← GetMemBlock(mbID)
12 mb.addr ← mbID × MBSize
13 if mb.type = CacheBlock then
14 reqRegion← [mb.addr,mb.addr+MBSize)∩[addr, addr+size)
15 if mode = Write then
16 mb.validRegions← mb.validRegions ∪ reqRegion
17 else if reqRegion ⊄ mb.validRegions then
18 paddedRegion← GetOverlappingSubBlocks(reqRegion)
19 fetchRegions← {paddedRegion} \mb.validRegions
20 BeginFetch(fetchRegions,mb.physMem)
21 mb.validRegions← mb.validRegions ∪ fetchRegions
22 if mb.addr ≠ mb.mappedAddr then
23 memBlocksToMap← memBlocksToMap ∪ {mb}
24 mb.refCount ← mb.refCount + 1
25 for mb ∈ memBlocksToMap do
26 if mb.mappedAddr ≠ NULL then
27 UnmapPhysMem(mb.mappedAddr,MBSize)
28 MapPhysMem(mb.addr,MBSize,mb.physMem)
29 mb.mappedAddr ← mb.addr
30 WaitFetchCompletion()
31 Function Checkin(addr, size,mode)
32 for mbID← ⌊addr/MBSize⌋ to ⌈ (addr+size)/MBSize⌉ − 1 do
33 mb← GetMemBlock(mbID)
34 if mode ≠ Read and mb.type = CacheBlock then
35 reqRegion← [mb.addr,mb.addr+MBSize)∩[addr, addr+size)
36 RegisterDirtyRegion(mb, reqRegion)
37 mb.refCount ← mb.refCount − 1

Figure 4: Implementation of checkout/checkin operations.

region [addr, addr + size) and operates on each block (line 10–24

and line 32–37).mbID is a unique ID for each virtual memory block,

which is calculated by dividing the starting virtual address by the

fixed size of memory blocks (MBSize).
The GetMemBlock function (line 11 and line 33) queries the

physical memory block associated with mbID. This translation

involves two separate fixed-size hash tables for home and cache

blocks, respectively. If the hash table already has an entry for the

given ID, the handler for the associated physical memory block

(mb of type MemBlock) is returned; otherwise, the ID is associated

with a free memory block and its handler is returned. If no free

memory block is found, an existing mapping entry is evicted based

on the least recently used (LRU) policy. The LRU priority is managed

with a doubly-linked LRU list. When a memory block is queried

(GetMemBlock()), its LRU entry is moved to the tail of the LRU

list. Upon eviction, the LRU list is traversed from the head to the tail

Itoyori: Reconciling Global Address Space and Global Fork-Join Task Parallelism SC ’23, November 12–17, 2023, Denver, CO, USA

until an evictable memory block is found. If no evictable block is

found, the checkout function raises a too-much-checkout exception.

A memory block is evictable if it is not dirty (see Section 4.4)

and its reference count is zero. The reference count is incremented

on the checkout call (line 24) and decremented on the checkin call

(line 37). This ensures that physical memory is present while the

region is being checked out
3
. We do the same for home blocks, the

reason for which will be explained in Section 4.3.2.

After getting a cache block, we make sure that the requested

data are up-to-date (line 13–21). In order to manage which parts of

a block are up-to-date, each cache block maintains a set of valid re-

gions (mb.validRegions). This is currently implemented as a linked

list of byte-granularity intervals, although a bitmap would be an-

other option. If the access mode is write-only, the exact region

requested by the user (reqRegion) is added to the valid regions

without fetching remote data (line 16). Otherwise, we check if the

requested region is up-to-date (line 17), and if not, the remote data

are fetched. The remote fetch is performed at the sub-block granu-

larity to exploit spatial data locality. That is, each memory block

is logically divided into one or more equal-sized sub-blocks, and

the sub-blocks that overlap with the requested region are fetched

at once (line 18). Note that the already valid regions should not

be fetched (line 19), so as not to overwrite the dirty data. Then,

nonblocking communication (using MPI_Get()) is issued to fetch

the selected regions fetchRegions from the data owner (line 20).

The completion of communication is awaited at the end of the

Checkout function (using MPI_Win_flush_all() at line 30).

Virtual memory mappings are updated after starting nonblock-
ing communication for all blocks, in order to hide the overhead of

the mmap() system call. In Figure 4, mb.mappedAddr is the virtual
address that the block is currently mapped to, and mb.addr is the
address that it needs to be mapped to. If they are different (line 22),

its memory mapping needs to be updated. Such memory blocks are

added to a list memBlocksToMap, and after all communication re-

quests are issued, their memory mappings are updated with mmap()
(line 25–29). Therefore, virtual addresses of cache blocks can change

during communication, but this is not a problem because they are

assigned different virtual addresses for communication in advance.

The Checkin function is responsible for managing dirty data in

each cache block, which is registered by the RegisterDirtyRegion

function if not read-only (at line 36). The management of dirty data

depends on the cache coherence protocol explained in Section 4.4.

4.3.2 Saving the Number of Memory Mapping Entries. Itoyori po-
tentially creates many memory mappings with the mmap() system

call, but unfortunately, Linux has a limit to the number of memory

mapping entries. In our experimental environment (Section 6.1),

we can create only 65530 mapping entries per process
4
, which is

problematic in practice. Therefore, we explicitly unmap
5
the pre-

vious mapping when the mapping changes (line 27 in Figure 4),

although we do not need to do this if there is no such limitation.

Nevertheless, the total cache size in Itoyori is restricted by this

limitation. Amemorymapping entry is counted for each contiguous

3
The reference count cannot be less than zero, as long as the checkout/checkin APIs

are called in pairs (see the API usage in Section 3.3).

4
checked with the “sysctl vm.max_map_count” command.

5mmap()with no access privilege (PROT_NONE) is used to preserve the virtual addresses
while unmapping physical memory. The munmap() call is not used for this purpose.

region of virtualmemory that is also contiguous in physical memory.

For 𝑁 cache blocks, we would need 2𝑁 + 1 entries in the worst

case (i.e., when the mappings are interleaved), because we also

need to preserve the addresses to which no block is mapped. As the

minimum block size is 64 KB in our environment, the maximum

cache size is approximately 65530/2×64 KB ∼ 2GB for each process.

Even for home blocks, this limitation is problematic for certain

memory distribution policies with interleaved memory mappings

(e.g., block-cyclic distribution). As a workaround, we limit the num-

ber of home blocks that can be simultaneously mapped for each pro-

cess. This is why home blocks aremanaged similarly to cache blocks,

using a hash table and reference counts in Figure 4. This means that

home blocks are also subject to eviction and no longer statically

mapped to the global view. Because of this reason, Itoyori requires

all global memory accesses go through the checkout/checkin calls,

even if the requested region is known to be local. Note that we can

skip dynamic home block management for block distribution, in

which consumption of memory mapping entries is small.

4.4 Cache Coherence Protocol
Itoyori employs a relaxed memory consistency model of SC-for-

DRF [2], as briefly mentioned in Section 3.1. Under this relaxed

memory model, a simple cache coherence protocol can be used,

assuming that the data-race-freedom is already ensured by program-

mers. Following the convention (e.g., [34]), Itoyori offers release
and acquire memory fences to ensure a consistent global view of

memory. Informally, if a release fence happened before an acquire

fence, there is a synchronization order, i.e., all updates made before

the release fence must be observed after the acquire fence. These

fences are typically hidden from the user and encapsulated by syn-

chronization primitives, such as locks, barriers, and fork-join calls.

As Itoyori currently supports only fork-join, the memory model

is equivalent to DAG consistency [13, 14]. We will explain how to

insert memory fences to fork-join primitives in Section 5.

To follow the synchronization order in Itoyori, each process per-

forms coherence actions for its local cache blocks. A release fence

ensures that all dirty data in the local cache are written to their

homes, and an acquire fence self-invalidates all local caches (by

clearing validRegions in Figure 4) so that successive checkout opera-
tions will fetch the latest data from their homes. In this way, Itoyori

ensures the order between the write events before a release fence

and the read events after the associated acquire fences. Although

one might feel that this coherence protocol is too naive, similar

approaches are taken by GPU’s hardware caches [68] and Chapel’s

software cache [30] because of its simplicity.

In this paper, we consider two approaches to handling dirty data

(RegisterDirtyRegion() at line 36 in Figure 4): the write-through
and write-back policies. With the write-through policy, the dirty

data are written to their homes immediately on each checkin call,

without remembering the dirty regions. On the other hand, with

the write-back policy, we delay flushing dirty data until the next

release fence by remembering the dirty regions. The dirty regions

are managed on a per-block basis and are maintained in the same

way as the valid regions (validRegions) as a linked list of memory

regions. When a release fence is executed, all dirty regions are

written back to their homes in byte granularity. As long as a cache

SC ’23, November 12–17, 2023, Denver, CO, USA Shumpei Shiina and Kenjiro Taura

Parent

Thread

Child

Thread

Fork Join

Release #1 Acquire #1Acquire #2

Acquire #3

Release #2

Release #3

Figure 5: Possible release/acquire fences in fork-join calls.

block has any dirty region, the block is not evictable. If all cache

blocks are not evictable when a free cache block is needed, then the

system writes back all dirty data and retries the eviction procedure.

5 INTEGRATIONWITH WORK STEALING
This section explains how Itoyori integrates the cache system with

work stealing, with an aim to to follow the work-first principle [31]

by delaying costly coherence actions until work stealing occurs.

5.1 Release/Acquire Fences in Work Stealing
As Itoyori’s threads can be dynamically migrated to other processes

at fork-join calls, release/acquire fences are inserted to fork-join

points. Figure 5 shows possible program points to insert release/ac-

quire fences. Since the modifications made before the fork must

be read by the child and the continuation of the parent, we insert

release/acquire fences accordingly. Similarly, the process that exe-

cutes the continuation of the join must read the modifications made

by the child and the parent before the join.

Obviously, this naive approach is not efficient for fine-grained

parallelism, but if we assume certain scheduling policies, we can

reduce the number of fences. As mentioned earlier (Section 2.1),

the work-stealing scheduler of Itoyori follows the child-first policy.

As the child thread is immediately executed after the fork, Acquire

#3 in Figure 5 can always be skipped. In addition, as long as the

parent thread is not stolen, Release #2, #3 and Acquire #1, #2 can

be skipped, because the child thread can be treated as a serialized

function call [31]. Conversely, if the parent thread is stolen by

another process, all of these fences are executed. Release #1 is the

only fence that is nontrivial to skip, because we do not know in

advance if the parent thread will be stolen or not.

5.2 Lazy Execution of Release Fences
The release fence before forking (Release #1) is, unlike the fences

that are conditionally executed only when work stealing happens,

performance critical for fine-grained parallelism. This is because

fork-join calls are usually much more frequent than work stealing

events (cf. the work-first principle [31]). That is, the more fine-

grained the threads are, the more release fences will be executed.

Therefore, we consider delaying the execution of Release #1

until the parent thread is stolen. This would require the thief to

notify the victim of the steal event and wait for the release to

complete. However, naive implementations would cause frequent

interruptions on the victim (e.g., by active messages), which can

diminish the benefits of RDMA-based asynchronous work stealing.

Following the work-first principle, we designed an algorithm

that can minimize the victim’s overhead. In our algorithm, the

thief sends a release request to the victim and the victim polls the

38 Struct ProcessLocalData
39 myProcID :: ID (rank) of the local process.

40 currentEpoch :: current epoch of the release operation.

41 requestEpoch :: epoch of the data requested to release by others.

42 Struct ReleaseHandler
43 procID :: ID (rank) of the process who owns the data to be released.

44 epoch :: epoch of the data to be released.

45 Function ReleaseLazy() :: ReleaseHandler
46 if all cache blocks are clean then return Unneeded
47 else return (myProcID, currentEpoch + 1)
48 Function Acqire(handler :: ReleaseHandler)
49 if handler ≠ Unneeded then
50 while Get(currentEpoch at handler .procID) < handler .epoch do
51 if first time then
52 atomic op at handler .procID do
53 requestEpoch← max(requestEpoch, handler .epoch)
54 Invalidate all cache blocks.

55 Function DoReleaseIfReqested()
56 if currentEpoch < requestEpoch then
57 Write back all dirty data to their homes.

58 currentEpoch← currentEpoch + 1

Figure 6: Implementation of lazy execution for release fences.

requests. Each polling operation can be performed quickly because

the check does not involve a communication call, since it only reads

local variables that may be modified by remote processes via MPI-3

RMA (assuming the MPI_WIN_UNIFIED model).

Figure 6 shows our implementation. The ReleaseLazy function

(line 45–47) is the function to be executed at Release #1. It returns

a release handler (ReleaseHandler at line 42–44), which is later

passed to the thief and used to request a write-back for the dirty

data at this point. A release handler is a pair of the process ID

(MPI rank) and an epoch. An epoch is managed by each process

(currentEpoch) and incremented at each write-back operation by

the process. If the local cache is dirty, currentEpoch + 1 is returned
as an epoch for the release handler (line 47). This indicates that

the next write-back operation must be completed by this process

to ensure the synchronization order. If the cache is clean, then no

write-back request is needed and Unneeded is returned as a release

handler. Release handlers are then passed to the corresponding

acquire fences (Acquire #2) by value.

The Acqire fence function (line 48–54) is called only when

the parent thread is stolen. If the handler is not Unneeded, it first
fetches the current epoch of the releaser to check if the next write-

back operation has already been performed (line 50). If it is still

smaller than the required epoch (handler .epoch), then a write-back

request is sent to the releaser only once (line 52–53). Our insight

is that, even if multiple acquirers simultaneously send write-back

requests to the same releaser, only the maximum epoch among

them is sufficient. Therefore, we use a remote atomic operation to

set the maximum epoch at the releaser’s memory
6
. The acquirer

6
The maximum value can be set by using the MPI_Fetch_and_op() function with the

MPI_MAX operation, but this operation is usually not offloaded to RDMA. Instead, we

emulate this operation using the MPI_Compare_and_swap() function with a loop.

Itoyori: Reconciling Global Address Space and Global Fork-Join Task Parallelism SC ’23, November 12–17, 2023, Denver, CO, USA

Table 1: Experimental environment.

Processor Fujitsu A64FX (@ 2.2 GHz, 48 cores/node)

Architecture ARMv8.2-A + SVE

Memory HBM2 (32 GiB/node)

Communication Fujitsu MPI 4.0.1 over Tofu Interconnect D

C++ Compiler Fujitsu compiler 4.8.1 (with -O3 -Nclang options)

OS RHEL 8.5 (kernel 4.18.0-348.20.1.el8_5)

then waits until the remote epoch reaches the required epoch by

repeatedly getting the remote epoch (using MPI_Get()).
To periodically check the update on the requested epoch, the

polling function (DoReleaseIfReqested at line 55–58) is inserted

to each fork and join call. If the requested epoch is greater than the

current epoch, the process writes back all dirty data and increments

the current epoch, so that the acquirers can break the loop. Note that

long-running tasks can delay the execution of the polling function

for a long time in this implementation. Another approach would be

to call DoReleaseIfReqested in a dedicated kernel-level thread,

but this has not been implemented yet.

6 EVALUATION
The primary goal of our performance evaluation is to demonstrate

that the fork-join model can successfully scale to distributed mem-

ory with the help of software caching. To this end, we ran three

fork-join applications: Cilksort (Section 6.2), UTS-Mem (Section 6.3),

and ExaFMM (Section 6.4), which all involve a reasonable amount of

global memory access. These applications are written in a shared-

memory-like, global fork-join model using Itoyori APIs, and no

explicit load balancing is performed in their code.

6.1 Experimental Settings
Table 1 summarizes the configuration of our experimental envi-

ronment. Its configuration is similar to that of the supercomputer

Fugaku, which consists of the Fujitsu A64FX CPUs and the Tofu

interconnect D. We used Fujitsu MPI, which offloads MPI-3 RMA

calls to RDMA operations. We allocated our jobs with 1, 2, 6 (2 × 3),
12 (2 × 3 × 2), and 36 (3 × 4 × 3) nodes as a torus topology and

used all cores by spawning 48 MPI processes per node. We set the

memory block size as 64 KB, which was the minimum page size in

our environment. We also set the software cache size as 128 MB

per process and the sub-block size as 4 KB. The block-cyclic distri-

bution policy was employed for collective memory allocation. We

repeated executions for 30 times after one warm-up run and plotted

their mean and the 95% confidence interval as error bars, which

were sufficiently small in most cases. Serial execution times for

calculating speedups were measured by eliding all Itoyori runtime

calls (e.g., fork-join, checkout/checkin) from the program.

As a baseline for the naive integration of the PGAS and fork-

join models, we implemented GET/PUT APIs without caching in

Itoyori. This paper does not include a performance comparison

with other existing PGAS systems, mainly due to the portability

issue in the network layer. Nevertheless, we consider our GET/PUT

implementation as a reasonable baseline. This is because these

GET/PUT APIs are merely a thin wrapper for MPI calls (MPI_Get()
and MPI_Put()), and MPI-3 RMA is also considered a PGAS library.

6.2 Cilksort
Cilksort is a recursive parallel merge sort algorithm shown in Fig-

ure 1. We measured the time to sort an array of 4-byte integers that

were generated uniformly at random.

First, we evaluate different caching policies by varying the task

cutoff count (the cutoff value in Figure 1). Figure 7 shows the result
on 12 nodes (576 cores). No Cache is the GET/PUT implementation

without caching, executed by replacing the checkout/checkin calls

with the GET/PUT calls by allocating user buffers for them. Write-
Through andWrite-Back represent thewrite-through andwrite-back
cache discussed in Section 4.4. Write-Back (Lazy) means the lazy

write-back policy for release fences (Section 5.2). The result clearly

shows that the more we delayed the write-back operation, the better

performance we got. In particular, when the cutoff count was as

low as 64, Write-Back (Lazy) was 1.58×, 2.13×, and 12.4× faster

thanWrite-Back,Write-Through, and No Cache, respectively. This
demonstrates thatWrite-Back (Lazy), which faithfully adheres to the
work-first principle, is the most robust to fine-grained parallelism.

Then, we conducted a scalability study for two array sizes (1G

and 10G elements) with the best-performing cutoff count of 16K.We

show only Write-Back (Lazy) as the cache-enabled version because

the performance difference was subtle with sufficiently large cutoff

counts. Figure 8 shows the scalability. Itoyori achieved a 325×
speedup on 36 nodes (1728 cores) compared to serial execution with

1G elements. Even compared to the std::sort() implementation,

it was a 266× speedup on this number of nodes. Software caching

improved performance by 37% on 36 nodes with 10G elements,

but not with 1G elements. This is because 10G elements offered

abundant parallelism, which enhanced cache reuse within each

process. Note that the 10G-element experiments demonstrate that

the multi-node execution with Itoyori can handle working sets

larger than the single-node memory (32 GB), as it requires at least

10G× 4 bytes (integer) × 2 (double buffering) = 80 GB of memory.

Although the execution times decreased as the number of nodes

increased, parallel efficiency of Itoyori was nevertheless low on

a large core count. Figure 9 shows the performance breakdown

reported by Itoyori’s profiler. The y-axis represents the times ac-

cumulated over all processes, normalized to the total accumulated

time on 1728 cores for each problem size. Get is the accumulated

time to load a single element during binary search in the merge

phase, while Checkout and Checkin correspond to the calls shown in
Figure 1, The Release time is accumulated for normal release opera-

tions (Release #2 and #3 in Figure 5), and the Lazy Release time is for

delayed write-back operations (required by Release #1). TheAcquire
time is mostly the wait time for the lazy release. Serial Quicksort and
Serial Merge are serial computations at leaf tasks. The Others time is

mostly the time for scheduling events (e.g., work stealing trials). The

result shows that, while the accumulated times for serial computa-

tions were almost constant, those for other communication-related

events increased as the number of cores increased. On 1728 cores,

the ratio of computation time was only about 20%. The Others time

on 1728 cores was particularly long for 1G elements but not for 10G

elements, because the workload for 1G elements was not enough to

keep all processes busy. We believe that locality-aware schedulers

would greatly reduce communication, as we currently use purely

random work stealing, but we leave this for future work.

SC ’23, November 12–17, 2023, Denver, CO, USA Shumpei Shiina and Kenjiro Taura

100 1000 10k 100k
1

10

No Cache

Write-Through

Write-Back

Write-Back (Lazy)

Cutoff count (# of elements)

Ex
ec

ut
io

n
Ti

m
e

(s
)

Figure 7: Execution time of Cilksort
(1G elements) with various cutoff
counts on 12 nodes (576 cores).

100 1000
0.1

1

10

No Cache

Cache (Write-Back, Lazy)

of cores

Ex
ec

ut
io

n
ti

m
e

(s
)

Linear speedup

(vs. serial)

Linear speedup

(vs. 288 cores)

1G elements

10G elements

Figure 8: Strong scaling of Cilksort.

48 96 288 576 1728 288 576 1728
1G elements 10G elements

0

0.2

0.4

0.6

0.8

1
Others

Get

Checkout

Checkin

Release

Lazy Release

Acquire

Serial Merge

Serial Quicksort

of cores / Input size

Figure 9: Performance breakdown ofWrite-Back
(Lazy) in Cilksort. Accumulated time are normal-
ized to those on 1728 cores for each input size.

6.3 UTS-Mem
The memory access granularity in Cilksort is easy to enlarge by

increasing the cutoff count, but this is not always the case in more

dynamic and irregular workloads. UTS-Mem [54], an extension

to the unbalanced tree search (UTS) benchmark [58], involves dy-

namic, irregular, and fine-grained memory access. The task of the

original UTS benchmark is to count the total number of nodes in an

unbalanced tree. However, the workload of UTS is not realistic, as

it does not involve global memory access. The tree is not in mem-

ory but is dynamically generated from the root in a deterministic

way, by using hash calculation during tree traversal. In contrast,

UTS-Mem generates the same tree as the original UTS and stores it

in memory by allocating memory objects from the global heap.

In our experiment, we measure the traversal time for the tree

constructed in global memory in advance. As the tree traversal is

performed by chasing global pointers, many fine-grained memory

accesses are performed. Although each tree node is accessed only

once, runtime caching can help improve performance by exploiting

spatial data locality. In this benchmark, close tree nodes are likely to

be located in close memory regions (e.g., within the same memory

block), because the tree construction is also done in parallel by

work stealing. During tree construction, the memory objects for

tree nodes are locally allocated with the noncollective mode.

Figure 10 shows the scalability for two different tree sizes: T1L

(102,181,082 nodes) and T1XL (1,635,119,272 nodes). The y-axis

shows the throughput (the number of tree nodes counted per sec-

ond). Note that we do not compare different caching policies be-

cause all global memory accesses are read-only during tree traversal.

Overall, Itoyori scales well and greatly outperforms the no-cache

version by exploiting spatial data locality. For T1XL, Itoyori showed

a good scalability (a 2.5× speedup from 12 nodes to 36 nodes) and

7.1× better performance than the no-cache version on 36 nodes.

6.4 ExaFMM
ExaFMM [72] is a Fast Multipole Method (FMM) library for N-body

simulation. It manages particles using a tree (called an octree) by
recursively partitioning the 3D space into eight parts until the num-

ber of particles becomes less than a threshold. By leveraging the

octree, it approximates the force interactions between far enough

particles to reduce computation. This makes its workload highly

dynamic and irregular. On shared memory, nested fork-join paral-

lelization for ExaFMM has been explored [69]. This implementation

straightforwardly parallelizes the tree-based computation with a

recursive divide-and-conquer method.

As a real-world case study, we ported this fork-join implementa-

tion of ExaFMM [71] to Itoyori. A major change from the original

code is the insertion of the checkout/checkin calls to where global

memory is accessed (e.g., computation kernels). In addition, wemod-

ified the program so that the parent thread stack is never accessed

by its children (see Section 3.1). This is mostly accomplished by

passing variables to child threads by value. Overall, we did not have

to change the whole structure of the original parallel algorithm.

Itoyori allows for much easier porting than the message-passing

model, which would require redesigning the parallel algorithm [72].

In our experiments, we computed the Laplace kernel for particles

distributed in a cube with the parameters 𝜃 = 0.2, 𝑁crit = 32, 𝑃 = 4,

nspawn = 1000 (see [69] for these parameters). Figure 11 shows the

results for 1M and 10M particles. Technically, the GET/PUT imple-

mentation (No Cache) is illegal in C++ because each octree node has

a nontrivially copyable, global vector container (see Section 3.2).

Overall, the cache-enabled versions outperformed the no-cache

version (up to 6.0× faster). This large performance improvement is

due to ExaFMM’s high degree of temporal and spatial locality for

both particles and octree nodes, although the computation pattern

is irregular. The performance of the write-back cache was better

than that of the write-through cache, but the lazy execution for

release fences did not improve the performance in this application.

The scalability for 10M bodies was better than that for 1M bodies

because of sufficient parallelism, and notably, it showed a 313×
speedup on 12 nodes (576 cores) compared to the serial execution.

We also report a comparison with the MPI implementation of

ExaFMM [71, 72]. Its shared-memory algorithm is the same fork-

join algorithm, but particles are distributed across nodes with MPI.

We used MassiveThreads [53] for thread scheduling within each

node. As shown in Figure 11, although the MPI version outperforms

Itoyori for some cases (up to 1.7× faster on six nodes), Itoyori shows
comparable performance to MPI overall. The main reason why MPI

sometimes performs worse than Itoyori is load imbalance. The MPI

version performs only static load balancing based on the particle

count, which results in load imbalance due to the dynamic and

irregular nature of tree-based computation. To validate this, we

Itoyori: Reconciling Global Address Space and Global Fork-Join Task Parallelism SC ’23, November 12–17, 2023, Denver, CO, USA

100 1000

100M

1G

10G

Cache (Write-Back, Lazy)

No Cache

of cores

Th
ro

ug
hp

ut
 (n

od
es

/s
)

T1L
T1XL
T1L

T1XL
Linear sp

eedup

(vs. s
erial)

Linear sp
eedup (vs. 1

 node)

Figure 10: Throughput of UTS-
Mem (strong scaling).

100 1000
1

10

100

100 1000
10

100

1000

No Cache Write-Through Write-Back

Write-Back (Lazy) MPI

of cores
Ex

ec
ut

io
n

ti
m

e
(s

)

Linear speedup

(vs. serial)

Linear speedup

(vs. serial)

1M bodies 10M bodies

Figure 11: Execution times of ExaFMM (strong scaling).

Table 2: Load balance in Ex-
aFMM (MPI) with 10M bodies.

of nodes (cores) Idleness

1 (48) 0

2 (96) 0.01

6 (288) 0.04

12 (576) 0.14

36 (1728) 0.27

measured the “idleness” metric of the MPI program, which is the

ratio of the total idle time during which MPI processes await the

completion of others to the overall execution time. Table 2 shows

the idleness for each node count. On 36 nodes, as much as 27% of

the total time was consumed due to load imbalance.

7 RELATEDWORK
The concept of a global address space is old; the research has begun

in the form of distributed shared memory (DSM) systems, such as

IVY [48], Munin [10], TreadMarks [42, 43], and Midway [11]. DAG
consistency [13, 14] for fork-join parallelism was also explored in

1990s. Recent advances in RDMA-capable network interconnects

have motivated researchers to investigate RDMA-friendly DSM

systems, such as ArgoDSM [41], Popcorn [24], and MENPS [29]. In

these DSM systems, transparency is achieved by trapping memory

protection faults at the page granularity, but it comes at a cost.

As discussed in Section 2.2, the PGAS model has attracted at-

tention because of its performance and programmability. Most

PGAS systems prefer explicit communication and thus do not

have a caching mechanism, but exceptionally, some PGAS sys-

tems [19, 25, 30, 73, 75] implement a software cache. However, they

assume the SPMD model and do not target the global fork-join

model, in which tasks are dynamically scheduled across nodes. In

addition, they implement a software cache over the GET/PUT APIs,

which fall short for our purpose as discussed in Section 3.2.

While some PGAS systems support inter-node dynamic load

balancing for tasks [26, 50, 55, 59, 74], a majority of “asynchronous”

PGAS systems support only intra-node dynamic load balancing,

including Chapel [21], HPX [40], GMT [52], HabaneroUPC++ [45],

AsyncSHMEM [36], X10 [23], and tasking extensions to Dash [63]

and XcalableMP [70]. In these systems, inter-node load balanc-

ing is still on the user’s responsibility. Their intent of intra-node

dynamic task scheduling is partly to overlap communication and

computation by context switching to other tasks while communi-

cation is ongoing, which is orthogonal to our caching approach.

Grappa [54, 55] is a system that takes this idea into account while

supporting inter-node work stealing, but without software caches.

The idea of communication-computation overlap may also be ap-

plicable to Itoyori, but we leave this investigation for future work.

Another spectrum of research is task-based distributed run-

time systems that tightly couple tasks and data to perform inter-

node dynamic load balancing. These systems include Legion [9],

KAAPI [33], PaRSEC [17], StarPU [5], OmpSs@Cluster [18, 49], and

Tascell [37]. In these systems, the input/output data of each task are

implicitly or explicitly specified by users with access privileges, and

the data are automatically moved to the nodes where the associated

tasks are executed. Itoyori is different from these systems in that it

decouples data from the task specifications for simplicity of APIs

and flexibility of global memory access.

Compiling shared-memory programs to distributed-memory pro-

grams is an alternative approach to achieving better productivity on

distributed memory. Compilation from regular, loop-based OpenMP

programs to MPI programs has been demonstrated through data-

flow analysis [8, 46]. However, this approach is not applicable to

dynamic and irregular applications that our work focuses on.

8 CONCLUSION AND FUTUREWORK
In this paper, we introduced Itoyori, a global-view fork-join runtime

system. Itoyori effectively addresses the challenge of combining

the PGAS and fork-join model by incorporating software caching

for global memory access. Our evaluation reveals that software

caching substantially improves performance, especially for fine-

grained parallelism. The three fork-join applications we tested were

written in a concise and intuitive manner, akin to shared-memory

fork-join programs, while demonstrating good scalability on multi-

ple nodes. In conclusion, we believe that Itoyori presents a viable

solution for achieving an optimal balance between productivity

and performance in distributed-memory programming.

Arguably, there is substantial work for improving Itoyori’s per-

formance in the future. The top priority is improving the sched-

uler to consider the memory hierarchy to reduce communication.

Locality-aware schedulers, such as almost deterministic work steal-
ing [64, 66], would be well-suited for distributed memory. Other

future directions include improvements to the cache coherence pro-

tocol, cache sharing among intra-node processes, communication-

computation overlap, and so on.

ACKNOWLEDGMENTS
This research was conducted using the FUJITSU Supercomputer

PRIMEHPC FX1000 (Wisteria/BDEC-01) at the Information Tech-

nology Center, The University of Tokyo. This work was supported

by JSPS KAKENHI Grant Number 21J22305 and JST, CREST Grant

Number JPMJCR21M2, Japan.

SC ’23, November 12–17, 2023, Denver, CO, USA Shumpei Shiina and Kenjiro Taura

REFERENCES
[1] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. 2000. The Data Locality of

Work Stealing. In Proceedings of the Twelfth Annual ACM Symposium on Parallel
Algorithms and Architectures (Bar Harbor, Maine, USA) (SPAA ’00). 1–12.

[2] Sarita V. Adve and Mark D. Hill. 1990. Weak Ordering – A New Definition. In

Proceedings of the 17th Annual International Symposium on Computer Architecture
(Seattle, Washington, USA) (ISCA ’90). 2–14.

[3] Shigeki Akiyama and Kenjiro Taura. 2015. Uni-Address Threads: Scalable Thread

Management for RDMA-Based Work Stealing. In Proceedings of the 24th Inter-
national Symposium on High-Performance Parallel and Distributed Computing
(Portland, Oregon, USA) (HPDC ’15). 15–26.

[4] Shigeki Akiyama and Kenjiro Taura. 2016. Scalable Work Stealing of Native

Threads on an x86-64 Infiniband Cluster. Journal of Information Processing 24, 3

(May 2016), 583–596.

[5] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacre-

nier. 2009. StarPU: A Unified Platform for Task Scheduling on Heterogeneous

Multicore Architectures. In Proceedings of the 15th International European Confer-
ence on Parallel and Distributed Computing (Delft, The Netherlands) (Euro-Par
’09). 863–874.

[6] Eduard Ayguadé, Nawal Copty, Alejandro Duran, Jay Hoeflinger, Yuan Lin, Fed-

erico Massaioli, Xavier Teruel, Priya Unnikrishnan, and Guansong Zhang. 2008.

The Design of OpenMP Tasks. IEEE Transactions on Parallel and Distributed
Systems 20, 3 (June 2008), 404–418.

[7] John Bachan, Scott Baden, Dan Bonachea, Johnny Corbino, Johnathan Gross-

man, Paul H. Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian

Van Straalen, and Daniel Waters. 2022. UPC++ v1.0 Programmer’s Guide, Re-
vision 2022.9.0. Technical Report LBNL-2001479. Lawrence Berkeley National

Laboratory, USA.

[8] Ayon Basumallik and Rudolf Eigenmann. 2006. Optimizing Irregular Shared-

Memory Applications for Distributed-Memory Systems. In Proceedings of the
Eleventh ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (New York, New York, USA) (PPoPP ’06). 119–128.

[9] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012. Legion:

Expressing Locality and Independence with Logical Regions. In Proceedings of
the International Conference on High Performance Computing, Networking, Storage
and Analysis (Salt Lake City, Utah, USA) (SC ’12). 66:1–66:11.

[10] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. 1990. Munin: Distributed Shared

Memory Based on Type-Specific Memory Coherence. In Proceedings of the Second
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(Seattle, Washington, USA) (PPOPP ’90). 168–176.

[11] B.N. Bershad, M.J. Zekauskas, and W.A. Sawdon. 1993. The Midway Distributed

Shared Memory System. In Digest of Papers. The 38th IEEE Computer Society
International Conference (San Francisco, California, USA) (COMPCON Spring ’93).
528–537.

[12] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Harsha Vardhan

Simhadri. 2011. Scheduling Irregular Parallel Computations on Hierarchical

Caches. In Proceedings of the Twenty-Third Annual ACM Symposium on Parallelism
in Algorithms and Architectures (San Jose, California, USA) (SPAA ’11). 355–366.

[13] Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson,

and Keith H. Randall. 1996. An Analysis of Dag-Consistent Distributed Shared-

Memory Algorithms. In Proceedings of the Eighth Annual ACM Symposium on
Parallel Algorithms and Architectures (Padua, Italy) (SPAA ’96). 297–308.

[14] Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson,

and Keith H. Randall. 1996. Dag-Consistent Distributed Shared Memory. In

Proceedings of the 10th International Parallel Processing Symposium (Honolulu,

Hawaii, USA) (IPPS ’96). 132–141.
[15] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-

erson, Keith H. Randall, and Yuli Zhou. 1995. Cilk: An Efficient Multithreaded

Runtime System. In Proceedings of the Fifth ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming (Santa Barbara, California, USA) (PPoPP
’95). 207–216.

[16] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling Multithreaded

Computations by Work Stealing. J. ACM 46, 5 (Sept. 1999), 720–748.

[17] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas

Herault, and Jack J. Dongarra. 2013. PaRSEC: Exploiting Heterogeneity to En-

hance Scalability. Computing in Science & Engineering 15, 6 (2013), 36–45.

[18] Javier Bueno, Luis Martinell, Alejandro Duran, Montse Farreras, Xavier Martorell,

Rosa M Badia, Eduard Ayguade, and Jesús Labarta. 2011. Productive Cluster

Programming with OmpSs. In Proceedings of the 17th International European
Conference on Parallel and Distributed Computing (Bordeaux, France) (Euro-Par
’11). 555–566.

[19] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant Agrawal, Gang Chen,

Beng Chin Ooi, Kian-Lee Tan, Yong Meng Teo, and Sheng Wang. 2018. Effi-

cient Distributed Memory Management with RDMA and Caching. Proceedings of
the VLDB Endowment 11, 11 (July 2018), 1604–1617.

[20] Hannah Cartier, James Dinan, and D. Brian Larkins. 2021. Optimizing Work

Stealing Communication with Structured Atomic Operations. In Proceedings of

the 50th International Conference on Parallel Processing (Lemont, Illinois, USA)

(ICPP ’21). 36:1–36:10.
[21] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. 2007. Parallel Pro-

grammability and the Chapel Language. International Journal of High Performance
Computing Applications 21, 3 (2007), 291–312.

[22] Barbara Chapman, Tony Curtis, Swaroop Pophale, Stephen Poole, Jeff Kuehn,

Chuck Koelbel, and Lauren Smith. 2010. Introducing OpenSHMEM: SHMEM

for the PGAS Community. In Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model (New York, New York, USA) (PGAS
’10). 1–3.

[23] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan

Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. 2005. X10: An

Object-Oriented Approach to Non-Uniform Cluster Computing. In Proceedings
of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (San Diego, California, USA) (OOPSLA ’05).
519–538.

[24] Ho-Ren Chuang, Robert Lyerly, Stefan Lankes, and Binoy Ravindran. 2020. Scal-

ing Shared Memory Multiprocessing Applications in Non-Cache-Coherent Do-

mains. In Proceedings of the 13th ACM International Systems and Storage Conference
(Haifa, Israel) (SYSTOR ’20). 13–24.

[25] Salvatore Di Girolamo, Flavio Vella, and Torsten Hoefler. 2017. Transparent

Caching for RMA Systems. In Proceedings of the 31st IEEE International Parallel
and Distributed Processing Symposium (Orlando, Florida, USA) (IPDPS ’17). 1018–
1027.

[26] James Dinan, Sriram Krishnamoorthy, D. Brian Larkins, Jarek Nieplocha, and P.

Sadayappan. 2008. Scioto: A Framework for Global-View Task Parallelism. In

Proceedings of the 37th International Conference on Parallel Processing (Portland,

Oregon, USA) (ICPP ’08). 586–593.
[27] James Dinan, D. Brian Larkins, Ponnuswamy Sadayappan, Sriram Krishnamoor-

thy, and Jarek Nieplocha. 2009. Scalable Work Stealing. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage,
and Analysis (Portland, Oregon, USA) (SC ’09). 53:1–53:11.

[28] Tarek El-Ghazawi, William Carlson, Thomas Sterling, and Katherine Yelick. 2005.

UPC: Distributed Shared Memory Programming. John Wiley & Sons.

[29] Wataru Endo, Shigeyuki Sato, and Kenjiro Taura. 2020. MENPS: A Decentralized

Distributed Shared Memory Exploiting RDMA. In Proceedings of 2020 IEEE/ACM
Fourth Annual Workshop on Emerging Parallel and Distributed Runtime Systems
and Middleware (Virtual Event) (IPDRM ’20). 9–16.

[30] Michael P. Ferguson and Daniel Buettner. 2015. Caching Puts and Gets in a PGAS

Language Runtime. In Proceedings of the 2015 9th International Conference on
Partitioned Global Address Space Programming Models (Washington, District of

Columbia, USA) (PGAS ’15). 13–24.
[31] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The Implementa-

tion of the Cilk-5 Multithreaded Language. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (Montreal,

Quebec, Canada) (PLDI ’98). 212–223.
[32] Karl Fuerlinger, Tobias Fuchs, and Roger Kowalewski. 2016. DASH: A C++ PGAS

Library for Distributed Data Structures and Parallel Algorithms. In Proceedings
of the 2016 IEEE 18th International Conference on High Performance Computing
and Communications (Sydney, NSW, Australia) (HPCC ’16). 983–990.

[33] Thierry Gautier, Xavier Besseron, and Laurent Pigeon. 2007. KAAPI: A Thread

Scheduling Runtime System for Data Flow Computations on Cluster of Multi-

Processors. In Proceedings of the 2007 International Workshop on Parallel Symbolic
Computation (London, Ontario, Canada) (PASCO ’07). 15–23.

[34] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop

Gupta, and John Hennessy. 1990. Memory Consistency and Event Ordering

in Scalable Shared-Memory Multiprocessors. In Proceedings of the 17th Annual
International Symposium on Computer Architecture (Seattle, Washington, USA)

(ISCA ’90). 15–26.
[35] Sayan Ghosh, Yanfei Guo, Pavan Balaji, and Assefaw H. Gebremedhin. 2021.

RMACXX: An Efficient High-Level C++ Interface over MPI-3 RMA. In Proceedings
of the 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet
Computing (Melbourne, Australia) (CCGrid ’21). 143–155.

[36] MaxGrossman, Vivek Kumar, Zoran Budimlić, and Vivek Sarkar. 2016. Integrating

Asynchronous Task Parallelism with OpenSHMEM. In Proceedings of the Third
Workshop on OpenSHMEM and Related Technologies (Baltimore, Maryland, USA)

(OpenSHMEM ’16). 3–17.
[37] Tasuku Hiraishi, Masahiro Yasugi, Seiji Umatani, and Taiichi Yuasa. 2009.

Backtracking-Based Load Balancing. In Proceedings of the 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (Raleigh, North

Carolina, USA) (PPoPP ’09). 55–64.
[38] SeemaHiranandani, Ken Kennedy, and Chau-Wen Tseng. 1992. Compiling Fortran

D for MIMD Distributed-Memory Machines. Commun. ACM 35, 8 (1992), 66–80.

[39] Torsten Hoefler, James Dinan, Rajeev Thakur, Brian Barrett, Pavan Balaji, William

Gropp, and Keith Underwood. 2015. Remote Memory Access Programming in

MPI-3. ACM Transactions on Parallel Computing 2, 2 (July 2015), 1–26.

[40] Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio, and

Dietmar Fey. 2014. HPX: A Task Based Programming Model in a Global Address

Itoyori: Reconciling Global Address Space and Global Fork-Join Task Parallelism SC ’23, November 12–17, 2023, Denver, CO, USA

Space. In Proceedings of the 8th International Conference on Partitioned Global
Address Space Programming Models (Eugene, Oregon, USA) (PGAS ’14). 6:1–6:11.

[41] Stefanos Kaxiras, David Klaftenegger, Magnus Norgren, Alberto Ros, and Kon-

stantinos Sagonas. 2015. Turning Centralized Coherence and Distributed Critical-

Section Execution on Their Head: A New Approach for Scalable Distributed

Shared Memory. In Proceedings of the 24th International Symposium on High-
Performance Parallel and Distributed Computing (Portland, Oregon, USA) (HPDC
’15). 3–14.

[42] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy Zwaenepoel. 1994.

TreadMarks: Distributed Shared Memory on Standard Workstations and Oper-

ating Systems. In Proceedings of the USENIX Winter 1994 Technical Conference
on USENIX Winter 1994 Technical Conference (San Francisco, California, USA)

(WTEC ’94).
[43] Pete Keleher, Alan L. Cox, andWilly Zwaenepoel. 1992. Lazy Release Consistency

for Software Distributed Shared Memory. In Proceedings of the 19th Annual
International Symposium on Computer Architecture (Queensland, Australia) (ISCA
’92). 13–21.

[44] Charles H. Koelbel, David Loveman, Robert S. Schreiber, Guy L. Steele Jr., and

Mary Zosel. 1993. High Performance Fortran Handbook. The MIT Press.

[45] Vivek Kumar, Yili Zheng, Vincent Cavé, Zoran Budimlić, and Vivek Sarkar. 2014.

HabaneroUPC++: A Compiler-Free PGAS Library. In Proceedings of the 8th In-
ternational Conference on Partitioned Global Address Space Programming Models
(Eugene, Oregon, USA) (PGAS ’14). 5:1–5:10.

[46] Okwan Kwon, Fahed Jubair, Rudolf Eigenmann, and Samuel Midkiff. 2012. A Hy-

brid Approach of OpenMP for Clusters. In Proceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (New Orleans,

Louisiana, USA) (PPoPP ’12). 75–84.
[47] Jinpil Lee and Mitsuhisa Sato. 2010. Implementation and Performance Evalua-

tion of XcalableMP: A Parallel Programming Language for Distributed Memory

Systems. In Proceedings of the 39th International Conference on Parallel Processing
Workshops (San Diego, California, USA) (ICPPW ’10). 413–420.

[48] Kai Li and Paul Hudak. 1989. Memory Coherence in Shared Virtual Memory

Systems. ACM Transactions on Computer Systems 7, 4 (Nov. 1989), 321–359.
[49] Jimmy Aguilar Mena, Omar Shaaban, Vicenç Beltran, Paul Carpenter, Eduard

Ayguade, and Jesus Labarta. 2022. OmpSs-2@Cluster: Distributed Memory Ex-

ecution of Nested OpenMP-style Tasks. In Proceedings of the 28th International
European Conference on Parallel and Distributed Computing (Glasgow, Scotland,

UK) (Euro-Par ’22). 319–334.
[50] Seung-Jai Min, Costin Iancu, and Katherine Yelick. 2011. Hierarchical Work

Stealing onManycore Clusters. In Proceedings of the Fifth Conference on Partitioned
Global Address Space Programming Models (Galveston Island, Texas, USA) (PGAS
’11). 1–10.

[51] Eric Mohr, David A. Kranz, and Robert H. Halstead. 1990. Lazy Task Creation:

A Technique for Increasing the Granularity of Parallel Programs. In Proceedings
of the 1990 ACM Conference on LISP and Functional Programming (Nice, France)

(LFP ’90). 185–197.
[52] Alessandro Morari, Antonino Tumeo, Daniel Chavarría-Miranda, Oreste Villa,

and Mateo Valero. 2014. Scaling Irregular Applications through Data Aggregation

and Software Multithreading. In Proceedings of the 28th IEEE International Parallel
and Distributed Processing Symposium (Phoenix, Arizona, USA) (IPDPS ’14). 1126–
1135.

[53] Jun Nakashima and Kenjiro Taura. 2014. MassiveThreads: A Thread Library for

High Productivity Languages. Concurrent Objects and Beyond 8665 (Jan. 2014),

222–238.

[54] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon

Kahan, and Mark Oskin. 2014. Grappa: A Latency-Tolerant Runtime for Large-

Scale Irregular Applications. In Proceedings of the First International Workshop on
Rack-Scale Computing (Amsterdam, The Netherlands) (WRSC ’14). 1–7.

[55] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon

Kahan, and Mark Oskin. 2015. Latency-Tolerant Software Distributed Shared

Memory. In Proceedings of the 2015 USENIX Annual Technical Conference (Denver,
Colorado, USA) (USENIX ATC ’15). 291–305.

[56] Jaroslaw Nieplocha, Robert J. Harrison, and Richard J. Littlefield. 1996. Global Ar-

rays: A Nonuniform Memory Access Programming Model for High-Performance

Computers. The Journal of Supercomputing 10, 2 (1996), 169–189.

[57] Robert W. Numrich and John Reid. 1998. Co-Array Fortran for Parallel Program-

ming. SIGPLAN Fortran Forum 17, 2 (Aug. 1998), 1–31.

[58] Stephen Olivier, Jun Huan, Jinze Liu, Jan Prins, James Dinan, P. Sadayappan,

and Chau-Wen Tseng. 2006. UTS: An Unbalanced Tree Search Benchmark. In

Proceedings of the 19th International Conference on Languages and Compilers for
Parallel Computing (New Orleans, Los Angeles, USA) (LCPC ’06). 235–250.

[59] Jeeva Paudel, Olivier Tardieu, and José Nelson Amaral. 2013. On the Merits of

Distributed Work-Stealing on Selective Locality-Aware Tasks. In Proceedings of
the 42nd International Conference on Parallel Processing (Lyon, France) (ICPP ’13).
100–109.

[60] Keith H. Randall. 1998. Cilk: Efficient Multithreaded Computing. Ph. D. Disserta-
tion. Department of Electrical Engineering and Computer Science, Massachusetts

Institute of Technology.

[61] James Reinders. 2007. Intel Threading Building Blocks: Outfitting C++ for Multi-
Core Processor Parallelism. O’Reilly Media.

[62] Tao B. Schardl and I-Ting Angelina Lee. 2023. OpenCilk: A Modular and Ex-

tensible Software Infrastructure for Fast Task-Parallel Code. In Proceedings of
the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel
Programming (Montreal, QC, Canada) (PPoPP ’23). 189–203.

[63] Joseph Schuchart and José Gracia. 2019. Global Task Data-Dependencies in PGAS

Applications. In High Performance Computing: the 34th International Conference,
ISC High Performance 2019 (Frankfurt/Main, Germany) (ISC ’19). 312–329.

[64] Shumpei Shiina and Kenjiro Taura. 2019. Almost Deterministic Work Stealing.

In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (Denver, Colorado, USA) (SC ’19). 47:1–47:16.

[65] Shumpei Shiina and Kenjiro Taura. 2022. Distributed Continuation Stealing is

More Scalable than You Might Think. In Proceedings of the 2022 IEEE International
Conference on Cluster Computing (Heidelberg, Germany) (Cluster ’22). 129–141.

[66] Shumpei Shiina and Kenjiro Taura. 2022. Improving Cache Utilization of Nested

Parallel Programs by Almost Deterministic Work Stealing. IEEE Transactions on
Parallel and Distributed Systems 33, 12 (Dec. 2022), 4530–4546.

[67] Min Si, Huansong Fu, Jeff R. Hammond, and Pavan Balaji. 2021. OpenSHMEM

over MPI as a Performance Contender: Thorough Analysis and Optimizations. In

Proceedings of the 8th Workshop on OpenSHMEM and Related Technologies (Virtual
Event) (OpenSHMEM ’21). 39–60.

[68] Matthew D. Sinclair, Johnathan Alsop, and Sarita V. Adve. 2015. Efficient GPU

Synchronization without Scopes: Saying No to Complex Consistency Models. In

Proceedings of the 48th International Symposium on Microarchitecture (Waikiki,

Hawaii, USA) (MICRO-48). 647–659.
[69] Kenjiro Taura, Jun Nakashima, Rio Yokota, and Naoya Maruyama. 2012. A Task

Parallel Implementation of Fast Multipole Methods. In 2012 SC Companion: High
Performance Computing, Networking Storage and Analysis–Workshop on Latest
Advances in Scalable Algorithms for Large-Scale Systems (Salt Lake City, Utah,
USA) (ScalA’ 12). 617–625.

[70] Keisuke Tsugane, Jinpil Lee, Hitoshi Murai, and Mitsuhisa Sato. 2018. Multi-

Tasking Execution in PGAS Language XcalableMP and Communication Opti-

mization on Many-Core Clusters. In Proceedings of the International Conference
on High Performance Computing in Asia-Pacific Region (Chiyoda, Tokyo, Japan)

(HPC Asia 2018). 75–85.
[71] Rio Yokota and Lorena Barba. 2020. GitHub repository: exafmm/exafmm-beta.

Retrieved 2022-11-30 from https://github.com/exafmm/exafmm-beta

[72] Rio Yokota, Lorena A. Barba, Tetsu Narumi, and Kenji Yasuoka. 2013. Petascale

Turbulence Simulation Using a Highly Parallel Fast Multipole Method on GPUs.

Computer Physics Communications 184, 3 (2013), 445–455.
[73] Jin Zhang, Xiangyao Yu, Zhengwei Qi, and Haibing Guan. 2022. Falcon: A

Timestamp-based Protocol to Maximize the Cache Efficiency in the Distributed

Shared Memory. In Proceedings of the 36th IEEE International Parallel and Dis-
tributed Processing Symposium (Lyon, France) (IPDPS ’22). 974–984.

[74] Wei Zhang, Olivier Tardieu, David Grove, Benjamin Herta, Tomio Kamada, Vijay

Saraswat, and Mikio Takeuchi. 2014. GLB: Lifeline-Based Global Load Balancing

Library in X10. In Proceedings of the First Workshop on Parallel Programming for
Analytics Applications (Orlando, Florida, USA) (PPAA ’14). 31–40.

[75] Zhang Zhang, Jeevan Savant, and Steven Seidel. 2006. A UPC Runtime Sys-

tem Based on MPI and POSIX Threads. In Proceedings of the 14th Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing
(Montbeliard-Sochaux, France) (PDP ’06). 195–202.

[76] Yili Zheng, Amir Kamil, Michael B. Driscoll, Hongzhang Shan, and Katherine

Yelick. 2014. UPC++: A PGAS Extension for C++. In Proceedings of the 28th IEEE
International Parallel and Distributed Processing Symposium (Phoenix, Arizona,

USA) (IPDPS ’14). 1105–1114.

https://github.com/exafmm/exafmm-beta

Appendix: Artifact Description/Artifact Evaluation

ARTIFACT DOI
https://zenodo.org/record/8086461

ARTIFACT IDENTIFICATION
Our computational artifacts include the implementation of the
Itoyori runtime system and the benchmarks for evaluating Itoyori.
These artifacts were used to support our primary contribution of
demonstrating the practicality of global-view fork-join program-
ming using the Itoyori platform. The threading layer of Itoyori
is based on the uni-address threads implementation (the version
used in the evaluation of [59]) with a little modification to insert
the release/acquire fences to the fork/join calls. We developed the
PGAS layer from scratch over MPI-3 RMA. Our artifact of the PGAS
layer demonstrates that the checkout/checkin APIs can be imple-
mented as we have explained in Section 4 and 5, which supports
our contribution of proposing software caching mechanisms.

The artifacts used in our evaluation are publicly available in the
following GitHub repositories:

• The top-level Itoyori interface and the benchmarks used in
this paper:
https://github.com/s417-lama/ityrbench

• The thraeding layer:
https://github.com/s417-lama/massivethreads-dm

• The PGAS layer:
https://github.com/s417-lama/pcas

The benchmarks included in the Itoyori benchmark reposi-
tory are Cilksort, UTS-Mem (uts++), and ExaFMM. Our Cilksort
program was ported from the Cilk v5.4.6 repository. The UTS-
Mem program was modified from the UTS implementation used
in [59] to allocate tree nodes in the global memory region. Ex-
aFMM (in the exafmm/ directory) is based on the exafmm-beta
repository (https://github.com/exafmm/exafmm-beta) and mod-
ified to run on Itoyori. The MPI version of ExaFMM (in the
exafmm_mpi/ directory) was also included in the exafmm-beta
repository butwemade a littlemodification tomake it run onA64FX
CPUs. For the MPI version of ExaFMM, we used MassiveThreads
(https://github.com/massivethreads/massivethreads, commit hash:
80809e588ea) for thread scheduling within each node.

REPRODUCIBILITY OF EXPERIMENTS
Overview
To manage our experiments, we use the Kochi workflow manage-
ment tool v0.0.1 (https://github.com/s417-lama/kochi/tree/0.0.1).
Kochi is designed to minimize the system-specific settings for the
node allocation in clusters (e.g., slurm) and manage the version-
controlled experimental results in git. For more details about Kochi,
see the Kochi tutorial (https://github.com/s417-lama/kochi-tutorial/
tree/0.0.1).

In the following, we assume that the Itoyori benchmark reposi-
tory (https://github.com/s417-lama/ityrbench) is cloned to the local
computer and the current directory is the clone (ityrbench). First,

we need to install the dependencies for the benchmarks (including
the threading and PGAS layer) by running the kochi install
command. To run the benchmarks on remote compute nodes,
some additional configurations are needed. In our case, the re-
mote compute nodes are on the Wisteria/BDEC-01 Odyssey super-
computer (wisteria-o), whose configuration can be found in the
kochi.yaml configuration file.

Kochi has three components: jobs, job queues, and workers. A job
specifies how to build and run each benchmark, which is enqueued
to a job queue. A worker is a process which executes each job by
repeatedly popping jobs from a specified job queue. The user first
submits jobs to job queues and then launch workers on compute
nodes allocated by the system’s job manager. The user can also
specify a set of jobs with different parameters (e.g., the number of
nodes, the input size), which is called a batch job. To reproduce the
figures in this paper, we submit batch jobs in each job configuration
file (cilksort.yaml, uts++.yaml, and exafmm.yaml).

To submit a batch job, we run:
kochi batch <job_config_file> <batch_name>
After the batch job submission, we allocate nodes from the sys-

tem’s job manager by running the following command:
kochi alloc -m wisteria-o -q node_\$nodes \
-n 1 -n 2:torus -n 2x3:torus -n 2x3x2:torus ...

This command will launch Kochi workers on each node count.
The node specification like 2x3x2:torus is passed to the system’s
job manager. In our case, it is passed to Fujitsu’s job manager
(pjsub) in the Wisteria/BDEC-01 Odyssey supercomputer, and
2x3x2:torus indicates that the nodes should be allocated in a torus
topology and its 3D topology should be as close to a cube as possi-
ble. When the system jobs start, the Kochi workers will also start
to pop jobs from the job queue and execute them.

After each job is completed, the result files are automatically
gathered into a separate git branch. To collect these results, we
need to run the following command on the ityrbench_artifacts
branch:

kochi artifact sync -m wisteria-o
The ityrbench_artifacts branch now contains the raw exper-

imental results, which will be plotted by the Python scripts in the
plot directory. The required Python packages can be installed by:

pip3 install numpy scipy pandas plotly
The Itoyori benchmark repository (https://github.com/

s417-lama/ityrbench) contains more information for benchmarking
and plotting. In the following, we explain how to submit batch jobs
and generate a plot for each figure in this paper.

Workflow for Figure 7
The common workflow in the following is:

(1) Submit batch jobs specified by “Batch job submission.”
(2) After all submitted jobs are completed, pull the experimental

results by running kochi artifact sync.
(3) Run plotting scripts specified by “Plotting.”

https://github.com/s417-lama/ityrbench
https://github.com/s417-lama/massivethreads-dm
https://github.com/s417-lama/pcas
https://github.com/exafmm/exafmm-beta
https://github.com/massivethreads/massivethreads
https://github.com/s417-lama/kochi/tree/0.0.1
https://github.com/s417-lama/kochi-tutorial/tree/0.0.1
https://github.com/s417-lama/kochi-tutorial/tree/0.0.1
https://github.com/s417-lama/ityrbench
https://github.com/s417-lama/ityrbench
https://github.com/s417-lama/ityrbench

Shiina, et al.

(4) Open the file specified by “Output file location” by a web
browser.

To generate Figure 7:
• Batch job submission:
kochi batch cilksort.yaml granularity

• Estimated total execution time: 1h
• Plotting:
python3 ./plot/cilksort/granularity.py

• Output file location:
./figs/cilksort/granularity_wisteria-o.html

Note that the estimated total execution time depends on how
nodes are allocated from the system’s job manager. The estimated
time in this paper is based on the worst-case scenario, in which all
jobs are executed one by one.

Workflow for Figure 8
To generate Figure 8:

• Batch job submission:
kochi batch cilksort.yaml serial
kochi batch cilksort.yaml scale1G
kochi batch cilksort.yaml scale10G

• Estimated total execution time: 3h
• Plotting:
python3 ./plot/cilksort/scaling.py

• Output file location:
./figs/cilksort/scaling_exectime_wisteria-o.html

Workflow for Figure 9
The required experimental data are already gathered in the previous
workflow (for Figure 8).

To generate Figure 9:
• Plotting:
python3 ./plot/cilksort/stats.py

• Output file location:
./figs/cilksort/stats_wisteria-o.html

Workflow for Figure 10
To generate Figure 10:

• Batch job submission:
kochi batch uts++.yaml serial
kochi batch uts++.yaml T1L
kochi batch uts++.yaml T1XL

• Estimated total execution time: 0.5h
• Plotting:
python3 ./plot/uts++/scaling.py

• Output file location:
./figs/uts++/scaling_wisteria-o.html

Workflow for Figure 11
To generate Figure 11:

• Batch job submission:
kochi batch exafmm.yaml serial
kochi batch exafmm.yaml scale1M
kochi batch exafmm.yaml scale10M

kochi batch exafmm_mpi.yaml scale1M
kochi batch exafmm_mpi.yaml scale10M

• Estimated total execution time: 90h
• Plotting:
python3 ./plot/exafmm/scaling.py

• Output file location:
./figs/exafmm/scaling_wisteria-o.html

Workflow for Table 2
The required experimental data are already gathered in the previous
workflow (for Figure 11).

The following script will show the busyness for the execution of
the MPI version of ExaFMM.

python3 ./plot/exafmm/mpi_balance.py
The idleness is calculated by (1.0 − busyness), where “busyness”

is the value shown by the script for each node count.

ARTIFACT DEPENDENCIES REQUIREMENTS
Hardware A CPU cluster connected with high-performance

interconnects (e.g., InfiniBand, Tofu-D Interconnect) is re-
quired for experiments. To reproduce the performance, the
interconnect should have relatively high bandwidth and sup-
port RDMA and network atomic operations. The CPU ar-
chitecture must be x86_64 or aarch64, which is currently
supported by Itoyori. In our experiments, Fujitsu A64FX
CPUs (aarch64) and Tofu-D Interconnect were used.

OS Linux is required, as Itoyori depends on some Linux-specific
system calls.

Software Libraries MPI is required. The implementation of
MPI-3 RMA should be sufficiently sophisticated; MPI-3 RMA
calls are expected to be directlymapped to RDMA.Otherwise,
Itoyori might result in poor performance or a deadlock. Other
minor software dependencies will be downloaded during the
workflow.

Input Dataset All of our experiments generate synthetic in-
put data at the program startup. No external input data are
needed.

ARTIFACT INSTALLATION DEPLOYMENT
PROCESS
The above explanation of the workflow is written for general users
who might want to use Itoyori on their platform, particularly for
supercomputers with a batch job management system. For the
artifact evaluation purpose, we provide a step-by-step instruction
to setup an experimental environment on the ChameleonCloud
platform. Please consult README.md of our artifact (https://zenodo.
org/record/8086461) for that information.

https://zenodo.org/record/8086461
https://zenodo.org/record/8086461

	Abstract
	1 Introduction
	2 Background
	2.1 Fork-Join Parallelism and Work Stealing
	2.2 The PGAS Model and Systems

	3 Itoyori Programming Model
	3.1 Overview
	3.2 Rationale of Checkout/Checkin APIs
	3.3 Programming with Checkout/Checkin APIs

	4 Software Cache Implementation
	4.1 Overview
	4.2 Memory Distribution Policies
	4.3 Global View Management
	4.4 Cache Coherence Protocol

	5 Integration with Work Stealing
	5.1 Release/Acquire Fences in Work Stealing
	5.2 Lazy Execution of Release Fences

	6 Evaluation
	6.1 Experimental Settings
	6.2 Cilksort
	6.3 UTS-Mem
	6.4 ExaFMM

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

