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ABSTRACT
With task parallel models, programmers can easily parallelize divide-

and-conquer algorithms by using nested fork-join structures. Work
stealing, which is a popular scheduling strategy for task parallel pro-
grams, can e�ciently perform dynamic load balancing; however, it

tends to damage data locality and does not scale well with memory-

bound applications. This paper introduces Almost Deterministic
Work Stealing (ADWS), which addresses the issue of data locality

of traditional work stealing by making the scheduling almost deter-
ministic. Speci�cally, ADWS consists of two parts: (i) deterministic
task allocation, which deterministically distributes tasks to workers

based on the amount of work for each task, and (ii) hierarchical
localized work stealing, which dynamically compensates load imbal-

ance in a locality-aware manner. Experimental results show that

ADWS is up to nearly 6 times faster than a traditional work stealing

scheduler with memory-bound applications, and that dynamic load

balancing works well while maintaining good data locality.

CCS CONCEPTS
• Computing methodologies → Shared memory algorithms.
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1 INTRODUCTION
Task parallel models are promising approaches to achieving both

high performance and productivity onmodernmulticore computers.

Task parallel models have an important characteristic of being

processor-oblivious, whichmeans that programmers can createmany

tasks regardless of the number of processors. Moreover, in task

parallel models, divide-and-conquer algorithms can be expressed

by using nested fork-join structures, which well matches memory

hierarchies in modern computers.

Numerous strategies have been proposed to e�ectively schedule

a computation graph of task parallel programs. There are o�ine

scheduling approaches, which determine the mapping of tasks to

processors prior to execution, perhaps at compile time [18]. In order

for o�ine scheduling to be e�ective, tasks’ execution times and

dependencies between them need to be known ahead of time, which
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is often not the case. In such cases, online dynamic scheduling is

necessary. Up to now, many dynamic schedulers for task parallel

programs have been developed. There are programming languages

supporting lightweight dynamic task scheduling, including Cilk

[6, 15], Chapel [8] and X10 [9]. There are also task parallel runtime

libraries which don’t require compiler support, including Intel TBB

[27], Argobots [29] and MassiveThreads [23]. Task parallelism was

also introduced in OpenMP 3.0 [3] and has evolved to support

dependencies and a�nities [24].

Work stealing is a popular strategy to schedule task parallel

programs dynamically. In work stealing, each worker executes tasks

autonomously from its own local task queue until it is exhausted;

it then tries to steal tasks from another worker (called victim).

A victim is usually chosen randomly from all workers (random
work stealing), and this randomness causes the problem of data

locality. There are mainly two issues. One is that it does not respect

machine’s hierarchy of locality; workers on the same socket are

likely to work on tasks remote on the computation graph, which are

therefore likely to access non-overlapping data. The other issue is it

breaks locality of iterative computations [1], which repeats similar

access patterns across iterations. Such applications often bene�t

from repeating the same task mapping across iterations, thereby

reusing data on the cache across iterations. In practice, random

work stealing works well within one socket [7], but it is less likely to

scale to multiple sockets or multiple levels of the memory hierarchy

(e.g., NUMA).

To mitigate the problem of data locality in random work steal-

ing, a number of strategies have been proposed. There are ap-

proaches that require hardware-speci�c locality hints of program-

mers [12, 16], which take non-trivial programmer e�orts. HotSLAW

[22] proposed to mitigate the �rst issue by a heuristic that �rst at-

tempts to steal from a victim within a close proximity of the stealing

worker. Many others try to address the second issue by repeating

the same task mapping across multiple iterations [10, 11, 19, 21, 35].

Obviously, they are applicable only to iterative applications.

This paper explores a simpler, arguably more straightforward,

approach to the problem of data locality of random work stealing,

called Almost Deterministic Work Stealing (ADWS), which sched-

ules tasks almost deterministically. Speci�cally, it consists of two

parts: deterministic task allocation and hierarchical localized work
stealing. ADWS addresses the locality issue of iterative applications

by making the scheduling almost deterministic (predictable from

the computation graph). ADWS targets nested fork-join programs,

and the issue of mismatch between task hierarchy and machine

hierarchy is resolved by making both the initial deterministic task

mapping and the dynamic work stealing respect the machine hier-

archy. For the initial deterministic task mapping, ADWS asks the

programmer to specify a hint on the amount of work done by the

generated task. This is certainly a burden on the programmer and

https://doi.org/10.1145/3295500.3356161
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(a) RandomWork Stealing (b) ADWS (no steal) (c) ADWS

Figure 1: A visualization of the task mapping among 64 workers in particle simulation of 2D dam breaking. The rectangles
are cells of the quadtree (corresponding to computations) overlaid on Figure 15. The color of the cells represents the rank of
workers, and the workers are colored gradually from blue to red in numerical order.

may not be readily available, but they do not have to be very precise

as the dynamic load balancing is always there to �x up the load

imbalances of the deterministic mapping. Also, as we show in Sec-

tion 4.1, the amount of work can be a relative number (the amount

of the child’s work relative to that of the parent). ADWS is di�erent

from other strategies in several ways. (i) unlike some work only

dealing with bag-of-tasks without any dependencies among them, it

can work for more general and powerful nested fork-join programs,

(ii) it addresses both of the issues mentioned above — locality of

iterative applications and memory hierarchy-aware scheduling —

in a simple uni�ed algorithm. ADWS was implemented on Mas-

siveThreads [23] and experimental results show it outperforms

other existing scheduling methods.

Figure 1 helps us understand how ADWS works. It visualizes

the task mapping overlaid on the �gure of 2D particle simulation

(Figure 15). Figure 1a shows how tasks are mapped on cores by

random work stealing, whereas Figure 1b and Figure 1c show the

mapping of deterministic and “almost” deterministic schedulers,

respectively. In ADWS (Figure 1c), workers steal tasks to compen-

sate the load imbalance based on the task distribution of Figure 1b

while maintaining most of the data locality.

To summarize the main contributions, this paper

(1) proposes Almost Deterministic Work Stealing (ADWS) sched-

uler (Section 4), which consists of

(a) deterministic task allocation, which initially allocates tasks

to workers deterministically at runtime (Section 4.2) and

(b) hierarchical localizedwork stealing, which dynamically steals

from a limited range of workers (Section 4.3), and

(2) shows ADWS outperforms other existing scheduling strategies

with memory-bound applications (Section 5).

2 RELATEDWORK
A�nity-based approaches are often used to mitigate data locality

problems for iterative applications. First, locality-guided work steal-
ing was proposed in [1]. When a task with an a�nity for a worker

is created, the task is pushed to both the local queue and the mail

box of that worker. Workers try to pop tasks from the mailbox

before attempting to steal. Work in [28] solved the problem of the

initial task distribution in locality-guided work stealing; that is,

workers stealing inappropriate tasks before tasks with a�nity for

them arrive.

Work pushing, which is similar to the a�nity-based approach,

was investigated in [12–14]. In [13, 14], data locality was optimized

by using data dependency information in OpenStream [26], which

is a data-�ow extension of OpenMP. The programming model is

di�erent from the basic fork-join model. NUMAWS [12] adopts a

basic fork-join programming model, and they proposed an e�cient

work pushing algorithm based on the work-�rst principle [15]. It
requires hardware-speci�c hints from programmers to obtain good

performance.

Where locality hints from programmers are concerned, SLAW

[16] and NUMAWS [12] require annotations for places where the
task should be executed (e.g., NUMA nodes), which are hardware-

speci�c. While ADWS requires hints from programmers, it only re-

quires application-speci�c hints. DistWS [25] requires application-

speci�c hints rather than hardware-speci�c ones, but the hints are

not intuitive for programmers because they are not transparent

to how DistWS works. In ADWS, the hints (the amount of work

for tasks) are transparent to how ADWS works, and therefore the

programmers don’t have to know how it works or even what work

stealing is.

HotSLAW [22] extends the principle of SLAW, but it does not

require locality hints from programmers. The authors proposed

hierarchical victim selection (which attempts to steal from the near-

est workers in hierarchical order) and hierarchical chunk selection
(which determines the number of tasks to steal dynamically based

on the distance in the memory hierarchy). However, HotSLAW does

not address the locality problem in iterative applications.

Some approaches use the structure of iterative applications to

improve data locality [10, 11, 19, 21, 35]. ADWS is di�erent from

these approaches because the application of ADWS is not limited

to iterative applications. Constrained work stealing [21] schedules

tasks deterministically for iterative applications by tracing and

replaying. Its previous work [20] showed the execution of task

parallel programs can be traced and replayed by using StealTree, and
constrained work stealing revises the traced scheduling by relaxing

the scheduling constraints (e.g., allow steals while replaying) for

the �rst several iterations. However, because random work stealing

is used to schedule the �rst iteration, there is no guarantee that

workers in the same NUMA node will execute close tasks in the

computation graph.

Like ADWS, there are also approaches that combine the initial

partitioning of tasks with work stealing. Work in [34] proposed

an approach that used o�ine analysis for tasks with no dependen-

cies (bag-of-tasks). The initial distribution of tasks is determined
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by using o�ine analysis, and they used a hierarchical work steal-

ing strategy based on the hardware topology. ADWS is di�erent

from their approach in that ADWS targets tasks with dependen-

cies (nested fork-join models) and does not require o�ine analysis

at compile time. AHS [32] initially distributes tasks to each node

rather than to each core, which means data in the private cache

cannot be reused in iterative applications. CATS [11] and LAWS

[10] are similar to AHS in the sense that they initially distribute

tasks to the NUMA node level, and they are only optimized for

iterative applications (as remarked above).

Localized work stealing was proposed in [30], which attempts

to steal its own tasks from workers who have previously stolen

them by maintaining a list of workers who are working on the

tasks. Localized work stealing is similar to hierarchical localized

work stealing that is described in this paper in the sense that it

dynamically makes some groups preferable to steal from.

3 BACKGROUND
3.1 Task Parallelism
The computation of task parallel programs is expressed as a di-

rected acyclic graph (DAG). Figure 2 is an example of a DAG. A

DAG consists of nodes (corresponding to computations) and edges

(representing dependencies between nodes). There are three types

of edges: spawn edges, continue edges and join edges. When a new

task is spawned, a spawn edge and a continue edge connect the

parent node to the spawned task and to the continuation of the

parent task, respectively. In Figure 2, the outlined edges represent

spawn edges, and the solid edges represent continue edges. A chain

of nodes connected with continue edges represents a task. In the

rest of this paper, we will place a spawned task to the left of the

parent, and the continuation to the right of the parent, as shown

in Figure 2. Join edges are required to wait for the completion of

other tasks, as represented by the dotted edges in Figure 2.

A fully-strict computation is one in which all join edges from

a task go to the parent of the task [7]. Many problems can be ex-

pressed in the form of a fully-strict computation, e.g., problems

solvable with divide-and-conquer algorithms. Figure 3 is a simpli-

�ed expression of a DAG of fully-strict computations. This example

spawns four child tasks at a time and waits for them recursively.

Some nodes and edges are omitted from general representation

of a DAG (like Figure 2) to make the fork-join structure clear. We

shall refer to a group of child tasks spawned at the same time “task

group”. Figure 6 is an example of task groups created in programs.

Figure 2: Example of a DAG
in task parallelism.

Figure 3: Expression of a
DAG of fully-strict computa-
tions.

Figure 4: Locality of iterative applications. If the program
sweeps the same data repeatedly in the same order, the
nodes within each dotted box share data locality.

3.2 Work Stealing
Work stealing is a popular strategy for scheduling task parallel

computations. A work stealing scheduler has a set ofworkers, which
usually correspond to processors or cores. Each worker has its own

task queue. When a new task is spawned, a worker pushes the

task or the continuation to the local task queue and executes the

other. When a worker completes the current task, it pops a task

from its own task queue and starts to execute it. Workers push/pop

tasks to/from the task queue in last-in, �rst-out (LIFO) order. If the

local task queue is exhausted, the worker (thief) tries to steal tasks

from the task queue of another worker (victim). The thief tries to

steal until a steal succeeds. The thief steals tasks from the opposite

end of the task queue, i.e., in �rst-in, �rst-out (FIFO) order, which

means the stolen task is the oldest task spawned by the victim in

the queue. Victims are usually chosen randomly from all workers

(random work stealing). Because of this, the mapping of tasks is

determined randomly.

Next, we describe two scheduling policies, work-�rst and help-
�rst [33]. With the work-�rst policy, a worker �rst executes the

spawned task and puts the continuation into the local task queue

at the time of the spawn. With the help-�rst policy, a worker �rst
executes the continuation and puts the spawned task into the local

task queue. With the work-�rst policy, the serial execution order is

preserved because we usually execute function calls �rst in serial

execution. This is an important characteristics because programs

are usually optimized for serial execution, and following this order

preserves the data access pattern in serial execution.

3.3 Locality of RandomWork Stealing
Random work stealing is known to have good data locality in com-

putation graphs on �at shared-memory machines [1], i.e., each

worker tends to execute close nodes in the DAG. However, workers

in groups that have the same level of locality do not always execute

close nodes in the DAG. Since close nodes in a DAG are likely to

have computations that will touch overlapping data, it will cause

more cache misses. For example, in NUMA architectures, traditional

random work stealing degrades performance because workers on

the same socket do not work on close tasks in a DAG.

As pointed out in [1], there is also data locality among tasks that

are not close in DAGs for iterative applications. Figure 4 illustrates

data locality of iterative applications. Usually, iterative applications

sweep the data in the same order at each iteration, which means
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Figure 5: Example of the desired distribution of taskswe pro-
pose. The number in the nodes denotes the worker who exe-
cutes the task. The tasks are split vertically in the DAG and
allocated to workers from right to left in numerical order.

data locality exists vertically in the DAG. In random work stealing,

workers tend to execute tasks at di�erent locations at each iteration

due to its randomness, so the cache cannot be reused for consecutive

iterations.

4 ALMOST DETERMINISTIC WORK STEALING
We had to guarantee both locality for iterative applications and lo-

cality in the computation graph for multilevel memory hierarchies.

Deterministic scheduling is considered to be a good solution for

ensuring data locality for iterative applications. In addition to this,

we had to allocate close tasks in a DAG to workers in the same

group (e.g., NUMA node). Figure 5 shows the desired distribution

of tasks. Each worker is allocated almost the same amount of work

(load balancing), and workers are placed from right to left
1
in

numerical order so that workers in the same group have tasks close

to each other in the DAG (We assumed that workers in the same

group were numbered adjacently). We also wanted the scheduler to

dynamically balance the load, because load imbalances can occur

even if the initial partitioning of tasks is not bad (e.g., because of

OS noise, CPU frequency scaling).

To achieve the task distribution as seen in Figure 5, we pro-

pose Almost Deterministic Work Stealing (ADWS). ADWS consists

of two parts. The �rst part is deterministic task allocation, which
initially allocates tasks to each worker deterministically based on

the amount of work for each task speci�ed by programmers. The

second part is hierarchical localized work stealing, in which workers

steal tasks from close workers based on the task distribution done

by deterministic task allocation when load imbalances appear.

4.1 Programming Model
In ADWS, programmers have to specify the amount of work for

each task. Even if the amount of work is roughly known and not pre-

cise, hierarchical localized work stealing is expected to compensate

the load imbalance in a locality-aware manner. Although specifying

the amount of work requires additional e�ort from programmers,

1
By placing workers from right to left in the DAG, we can preserve the serial ex-

ecution order (from left to right) for each worker as well as the work-�rst policy
(see Section 4.2.2). Recall that �rst spawned tasks are placed in the left as noted in

Section 3.1.

1 task_group tg;
2 tg.run([]{ ... });
3 tg.run([]{ ... });
4 tg.run([]{ ... });
5 tg.run([]{ ... });
6 tg.wait();

1 task_group tg(w_all);
2 tg.run([]{ ... }, w1);
3 tg.run([]{ ... }, w2);
4 tg.run([]{ ... }, w3);
5 tg.run([]{ ... }, w4);
6 tg.wait();

Figure 6: TBB’s task group (left) and ADWS’s extension
(right).

it is application-speci�c and programmers can write programs re-

gardless of the machine architecture, i.e., it is processor-oblivious

and has good code portability.

We adopted TBB-like task group notation [27] as the program-

ming model, and the class of problems is restricted to fully-strict
computations in ADWS. We can spawn tasks and wait for them by

using task groups as shown in Figure 6. In ADWS, we only have to

specify the total amount of work in each task group (w_all) and
the amount of work for each spawned task (w1, w2, w3, w4). We

assume w_all == (w1 + w2 + w3 + w4), and they don’t need to be
absolute values. It is su�cient to specify the ratio of work for each

spawned task relative to the total work in the task group (w_all).
We could force w_all to be always 1 and remove the parameter

w_all, but to explicitly specify a denominator simpli�es programs

in most cases (see below).

The execution order is also an important factor in ADWS. The

execution order of tasks by each worker is almost the same as the

serial execution order (see Section 4.2.2). Because of this, program-

mers should write programs that work e�ciently in serial execution,

i.e., the data access pattern should be optimized for serial execution.

If it is an iterative program, the data access pattern should be al-

most the same for consecutive iterations, so that workers access the

same data for consecutive iterations. ADWS distributes tasks in the

same order even for consecutive task groups in each task, which

means accessing data in the same order for consecutive task groups

enables better data locality (see matrix-multiplication example in

Section 4.1.2).

4.1.1 Example 1. Calculation of Particle Interactions . We introduce

particle simulation as an example of a way to specify the amount

of work for each task. For example, FDPS
2
manages a group of

particles by using the Barnes-Hut octree structure [4]. With task

parallelism, we can easily parallelize the calculation of particle

interactions by traversing the octree.

1 particle_interaction(node) {
2 if (node is leaf) {
3 Calculate particle interactions in node;
4 } else {
5 task_group tg(node.n_particles);
6 for (child in node.children) {
7 tg.run([]{particle_interaction(child);}, child.n_particles);
8 }
9 tg.wait();
10 }
11 }

This code speci�es the number of particles in a node as the

amount of work for the task. Though the number of particles is an

approximation for the amount of work, we can use a rough estimate

of work in ADWS.

2
A framework for developing parallel particle simulation codes [17]
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(a) First, suppose that only one task exists
andworker 0 is executing the task. The range
of workers covers all workers, i.e., the de-
scendant tasks of the task are distributed
among all workers.
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(b) When a child task is spawned, the range
of workers is divided into two subranges ac-
cording to the ratio of work for the spawned
task (the left node) and the continuation (the
right node).
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(c) The distribution of tasks is determined re-
cursively and in parallel. A node which has
multipleworkers in its range is executed by the
rightmost worker in the range (i.e., the worker
with the smallest rank).

Figure 7: Overview of deterministic task allocation for eight workers. The bottom rectangles represent the number line of
workers, and the triangles below the nodes represent the range of workers for each node. The number in the node denotes the
worker that executes the node.

4.1.2 Example 2. Matrix Multiplication . We also introduce the

matrix-multiplication (matmul in short) as an example, which cal-

culates C = AB, where A, B, and C are matrices. By dividing the

matrices into four submatrices, we get(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

) (
B11 B12

B21 B22

)
=

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)
We can get a result by using the products of submatrices, so we

can apply the divide-and-conquer algorithm.

1 matmul(A, B, C) {
2 if (size_of(C) < CUTOFF) {
3 C += AB;
4 } else {
5 task_group tg1(4);
6 tg1.run([]{ matmul(A11, B11, C11); }, 1);
7 tg1.run([]{ matmul(A21, B11, C21); }, 1);
8 tg1.run([]{ matmul(A11, B12, C12); }, 1);
9 tg1.run([]{ matmul(A21, B12, C22); }, 1);
10 tg1.wait();
11 task_group tg2(4);
12 tg2.run([]{ matmul(A12, B21, C11); }, 1);
13 tg2.run([]{ matmul(A22, B21, C21); }, 1);
14 tg2.run([]{ matmul(A12, B22, C12); }, 1);
15 tg2.run([]{ matmul(A22, B22, C22); }, 1);
16 tg2.wait();
17 }
18 }

There are two task groups in a task (line 5-10 and line 11-16). tg1
calculates the former terms (A11B11, A21B11, A11B12, and A21B12),
and tg2 calculates the latter terms (A12B21, A22B21, A12B22, and
A22B22). To avoid concurrent writes to theC bu�er, tg2 is executed
after tg1 is completed. The matrices are divided recursively until

the size of matrices becomes small enough (line 2). Because each

task in a task group is expected to have the same amount of work,

we simply specify 4 as the total amount of work in the task group

and 1 as the amount of work for each task.

Note that the order of calculating submatrices ofC in tg1 (line 6-
9) is the same as that of tg2 (line 12-15). In ADWS, workers calculate

close to the same location of submatrices of C in consecutive task

groups, and this can lead to good locality across consecutive task

groups. We can consider the locality of iterative applications to be

a speci�c case of locality of consecutive task groups; an application

is called iterative when the root task has multiple task groups.

4.2 Deterministic Task Allocation
Here we describe deterministic task allocation, which is the central

part of ADWS. In deterministic task allocation, �rst, workers deter-

mine the distribution of tasks so that the load is balanced, and then

workers execute tasks allocated to them. We can also view it as a

static load balancing algorithm for nested fork-join programs.

4.2.1 Basic Idea. Let us consider what we should do when a new

task is spawned. Because we want to complete the spawned task

and the continuation in the same execution time, we allocate “an

amount of workers” to them proportionally to the amount of work

for each task
3
. We said “an amount of workers” instead of “the

number of workers” because it can be a �oating-point number. In

the implementation of deterministic task allocation, we manage “a

range of workers” rather than an amount of workers. A range of

workers is represented by two �oating-point numbers, which are

represented as points on the number line of workers. This idea is

illustrated in Figure 7. The rectangles at the bottom represent the

number line of workers, and we call them the “work region”. We

assumed that there was only one task in the �rst stage and worker

0 was executing the task while the others were idle. The initial

range of workers covered all the workers, because we wanted to

distribute all descendant tasks evenly to all the workers. When a

task is spawned, we divide the current range of workers into two

subranges based on the amount of workers, as calculated by the

amount of work for the spawned task and the continuation. The

amount of work for the spawned task is given by the programmers.

Subsequently, the range of workers is recursively divided into small

subranges.

4.2.2 Algorithm . In deterministic task allocation, the workers

distribute tasks while executing the DAG. First, workers dive into

the bottom of the DAG to �nd the left boundary of the worker’s own

3
If we take a critical path into account, the spawned task and the continuation are

not completed in the same execution time. The expected execution time of fully-strict

computations by using a random work stealing scheduler with P workers is given as

Tp = T1/P +O (T∞), where T1 is the total amount of work of the computation and

T∞ is the critical path [2, 7]. If the parallelism (T1/T∞) is su�ciently larger than P ,
i.e., T1/T∞ � P , our assumption Tp ≈ T1/P is true.
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(c) The search by worker i continues until
worker i encounters the end of task execution
or a wait. Other workers can migrate tasks to
worker i , andworker i executes them after all
tasks in its local queue are completed.

Figure 8: Search algorithm of deterministic task allocation carried out by worker i. The arrows with solid lines represent the
path of the search by worker i, and the ones with dotted lines represent task migration.

work region. We call this step “search”, in an analogy to searching

a value in a binary tree.

Workers migrate tasks to other workers during a search. We

de�ne the term “search-root task” as a task in which its range of

workers is across multiple workers. A task that has one worker in

the range of workers is called a “non-search-root task”. Figure 8

illustrates the search algorithm. First, worker i receives a search-
root task from other workers. Then, worker i starts searching for
the left boundary of its own work region. If the range of workers is

divided at the work region of another worker, worker i migrates

the spawned task to the worker at the boundary and executes the

continuation. If it is divided at worker i’s own work region, worker

i puts the continuation to its local queue and executes the spawned

task. By following this algorithm, tasks are always assigned to the

rightmost worker in their range of workers. The search �nishes

when the task being executed is completed, or when the worker

encounters a wait. We also describe the search algorithm in the

pseudocode below.

1 thread local variables { rank, cur_work, cur_range };
2 create_task_group(total_work) { cur_work = total_work; }
3 create_task(new_task, work) {
4 if (searching) {
5 worker_amount = cur_range.left - cur_range.right;
6 middle = cur_range.left - worker_amount * work / cur_work;
7 left_range = {left: cur_range.left, right: middle};
8 right_range = {left: middle, right: cur_range.right};
9 new_task.range = left_range;
10 if (rank == (int)middle) { /* Go to the left */
11 cur_range = left_range;
12 Put continuation to local queue;
13 run new_task;
14 } else { /* Go to the right */
15 Migrate new_task to worker (int)middle;
16 cur_work -= work;
17 cur_range = right_range;
18 }
19 } else { /* Go to the left (work-first) */
20 Put continuation to local queue;
21 run new_task;
22 }
23 }

worker_amount at line 5 represents the amount of workers in the

current node, and middle at line 6 denotes the division point of the

range of workers in the number line of workers.

Search-root tasks are put in a special bu�er (as discussed in

Section 4.2.3) and can be executed immediately because there can

be one search-root task at a time (∵ Theorem 2). The continuations

put into the local queue during a search are executed after the

search in LIFO order, and the non-search-root tasks migrated from

other workers are executed in FIFO order after all tasks in the local

queue are completed. Tasks are executed by the work-�rst policy
while not searching. By following this execution order, we can

preserve the serial execution order, i.e., the execution order is from

left to right in �gures.

We had assumed that worker 0 executes the root task initially,

but this assumption is not true in practice. For example, in iterative

programs, we cannot predict which worker will execute the root

task when an iteration �nishes, so we have to explicitly migrate

the root task to worker 0 after the completion of all waits. In some

cases, a task has multiple task groups, like the matmul example

(Section 4.1.2). We also have to migrate a search-root task back to

its owner (return migration) after a task group in the search-root

task is completed. The owner of the task is de�ned as the rightmost

worker in the range of workers. Then, the owner starts a search

from the next task group using the same range of workers as the

previous task group. Figure 5 helps us understand how tasks in

consecutive task groups are distributed.

4.2.3 Implementation of Task Migration . We introduce some lem-

mas and theorems, and then we describe the implementation of task

migration using the characteristics induced by the theorems. Here,

we simply write a range of workers as [i, j] (i ≤ j) by using the

rank of each worker (an integer value); worker i is the rightmost

worker and worker j is the leftmost worker in the �gures
4
. Thus

the owner of this range is de�ned as worker i . If worker i has the
range [i, j] while searching, worker i has the privilege of migrating

tasks to worker i + 1, . . . , j (worker i cannot migrate tasks to itself).

4
Workers are placed from right to left in numerical order in the �gures, which is the

reverse order of the literal notation [i , j] on the paper.
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First, we consider the implementation of the queue for non-

search-root tasks.

Lemma 1. Let i be an arbitrary number of workers except for 0
(i = 1, . . . , P − 1). Suppose that worker j (0 ≤ j < i) has the privilege
of migrating non-search-root tasks to worker i during a search. Then
worker j either delegates the privilege to another worker or keeps the
privilege without delegation through any spawn.

Proof. Worker j has the range of workers [j,k] (j < i ≤ k)
because it has the privilege of migrating non-search-root tasks to

worker i . When worker j spawns a task, the range of workers is
divided into two subranges [j, l] and [l,k] (j ≤ l ≤ k) (the range is
split at the middle of worker l ’s work region). If l = j , worker j puts
the continuation to its local queue and executes the spawned task;

therefore worker j keeps the privilege. Otherwise, worker j executes
the continuation with the new range [j, l], and the spawned task is

migrated to worker l . If i ≤ l , worker j keeps the privilege without
delegation; otherwise, worker j loses the privilege and worker l
gets the privilege instead. �

Lemma 2. Let i be an arbitrary number of workers except for 0
(i = 1, . . . , P − 1). Suppose that only worker j (0 ≤ j < i) has the
privilege of migrating non-search-root tasks to worker i , and worker j
encounters a task group (TG1) during a search. Then only one worker
has the privilege at the same time until all tasks inTG1 are completed,
and the privilege is returned to worker j when TG1 is completed.

Proof. Because of Lemma 1, only one of the owners of the

child tasks in TG1 gets (or keeps) the privilege. Let it be worker k
(j ≤ k < i), and let Tk denote the child task of TG1 executed by

worker k . Now let us assume that this lemma is true for worker k .
If worker k encounters the �rst task group in Tk , only one worker

has the privilege at the same time until the task group is completed,

and the privilege is returned back to worker k with Tk under this

assumption. The same is true of the consecutive task groups in

Tk . When Tk is completed, worker k loses the privilege and the

privilege is returned to the owner of TG1 (i.e., worker j). As a base
case, ifTk has no task groups, the privilege is immediately returned

to worker j. Thus the lemma is proved recursively. �

Theorem 1. Let i be an arbitrary number of workers except for 0
(i = 1, . . . , P − 1). Then workers do not migrate non-search-root tasks
to worker i simultaneously at any point in time.

Proof. At the beginning of the program, only one task exists,

and only worker 0 has the privilege of migrating non-search-root

tasks to worker i . Because of this, we can apply Lemma 2; therefore

only one worker can migrate non-search-root tasks to worker i at
any point throughout the program. �

By Theorem 1, migration of non-search-root tasks does not re-

quire lock operations (lock-free). Because of this, we can imple-

ment queues without any locks or CAS operations for deterministic

task allocation. We need locks if we enable hierarchical localized

work stealing, but even if we use queues with locks, we antici-

pate that the lock contention is unlikely to happen during a search

because multiple workers never push tasks to the queue at the

same time, and steals rarely happen during a search because of the

management of steal ranges (see Section 4.3).

Next, we discuss how search-root tasks should be treated.

Lemma 3. Let i be an arbitrary number of workers (i = 0, . . . , P−1).
Then once search-root task Ti is migrated to worker i , other workers
can migrate only non-search-root tasks to worker i during searches
until Ti is completed.

Proof. Ti must have range [i, j] (i < j), and if worker k (0 ≤

k < i) can migrate Ti to worker i , worker k must have range [k, j].
Once worker k migrates Ti to worker i , range [k, j] is divided into

[k, i] and [i, j] and worker k continues the search from [k, i]. In the

following search from [k, i], workers can only migrate non-search-

root tasks (with range [i, i]) to worker i . Worker k only regains

range [k, j] after Ti is completed. �

Theorem 2. Let i be an arbitrary number of workers (i = 0, . . . , P−
1). Then the number of search-root tasks migrated to worker i and not
popped by worker i is at most one at any point in time.

Proof. Because of Lemma 3, we only have to consider the return

migration of search-root tasks while not searching. Worker i starts
a search when search-root taskTi is migrated, and some search-root

tasks with range [i, j] (i < j) are spawned during the search. Ti is
migrated back to worker i when a task group in Ti is completed.

Because of this, Ti is not migrated back until all descendant search-

root tasks are completed. The same is true of descendant search-root

tasks, and therefore search-root tasks are only migrated back to

worker i after worker i pops the previous search-root task. �

By Theorem 2, it is su�cient for each worker to have one bu�er

for the migration of search-root tasks in the implementation. Sum-

marizing, what we need per worker is two queues and a bu�er

for the migration. Although we can achieve LIFO for tasks pushed

during searches and FIFO for migrated non-search-root tasks with

one queue per worker, we have two queues in ADWS (the local

queue and the migration queue). This is because the steal strat-

egy in hierarchical localized work stealing can be simpli�ed by

splitting the queue. The local queue is used for tasks generated

during a search and their descendants, and the migration queue is

for non-search-root tasks migrated from other workers and their

descendants.

4.2.4 Problems with a Complex DAG . One problem with determin-

istic task allocation is that, with a complex DAG, workers are some-

times forced to be idle for a while (i.e., the scheduler is not greedy).

If nested tasks have multiple task groups, we call it a complex DAG.

For example, task parallel matrix-multiplication (Section 4.1.2) has

a complex DAG. On the other hand, A simple DAG has a single

task group per task, such as the example of particle interactions in

Section 4.1.1.

When dividing the range of workers during a search, we allow

the range to be divided in the middle of a work region, i.e., the

amount of workers allocated to tasks can be a �oating-point number.

Because of this, workers often execute tasks from distinct task

groups. This is not a problem with a simple DAG, but it can be a

problem with a complex DAG (see Figure 9). Tasks shaded in the

middle of the DAG are allocated to the same worker i . First, worker i
starts a search from the left-side task group, and then executes tasks

created during the search. The tasks in the right-side task group,
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wait

(1) First, worker  executes
tasks in the left-side task group.

� (2) Tasks in the right-side task
group are not executed yet.

(3) The wait is not resolved and
other workers are forced to stay idle.

Tasks of worker �

Figure 9: Example of the problem with a complex DAG in
deterministic task allocation.

which are migrated from other workers, are executed after that. If

there is a wait in the middle of the right-side task group, workers in

the right-side task group have to wait for worker i to execute tasks

in the right-side task group, and the following task groups cannot

be executed because of it. Deterministic task allocation ensures the

amount of work assigned to a worker is almost the same, but it

doesn’t provide the proper execution order. Deciding the proper

execution order is not obvious because, if we execute tasks on one

side, workers on the other side can be forced to wait. We can solve

this problem with hierarchical localized work stealing, which is

described in the next section.

4.3 Hierarchical Localized Work Stealing
In hierarchical localized work stealing, the range of victims is lim-

ited based on the task distribution done by deterministic task al-

location and is dynamically updated from bottom up according to

the completion status of the task groups.

4.3.1 Algorithm . As an additional procedure during a search,

workers need to construct a tree of steal ranges. A steal range

contains three elements: a range of workers, a pointer to the parent

steal tree, and an active �ag. When a worker encounters a task

group during a search, the worker appends a new steal range to

the tree. Figure 10 shows an example of the tree of steal ranges.

At the beginning of the execution, only worker 0 has a steal

range [0, P − 1], where P is the number of workers. Each worker

holds its current steal range. Here is the basic rule:

• A current steal range of each worker (except for worker

0) is �rst set to the current steal range of the worker who

migrates a search-root task to it.

• Workers append a newly created steal range to their current

steal range when it encounters a task group during a search.

• During a search, workers pass their current steal range to

other workers with the migration of search-root tasks.

• When a search �nishes, the current steal range is activated.

• When a task group in the current steal range is completed,

the steal range is deactivated, and the current steal range is

set to the parent.

• When a search-root task is completed, the current steal range

is activated.

When a steal range is activated, its descendants should be deac-

tivated. For example, in Figure 10, if steal range [0, i] is deactivated
and the parent [0, j] is activated by worker 0, the range [i, j] should

[k, P − 1] [j, k] [i, j] [0, i]

 [j, P − 1] [0, j]

[0, P − 1]

0P − 1 k j i

Figure 10: The tree of steal ranges. The rectangles with the
rounded corners with a range of workers represent steal
ranges. Steal ranges are activated from the bottom up, and
�nally only the root steal range [0, P − 1] is activated. In this
case, the active steal ranges are [0, j], [j,k] and [k, P − 1].

be also deactivated even if the range [i, j] is still active. This is be-
cause if the parent [0, j] is activated, the tasks in the range [i, j] can
be stolen by workers in the range [0, i], and workers in the range

[i, j] may not be able to �nd tasks in the range [i, j] if we do not

deactivate the range [i, j]. This deactivation is done autonomously;

that is, a worker checks if there are active ancestors of the current

steal range from the bottom up every time the worker tries to steal.

If the worker �nds active ancestors, the worker deactivates the cur-

rent steal range and updates its current steal range to the topmost

active ancestor.

When there is no task, workers try to steal tasks if the current

steal range is active. Victims are randomly chosen from the current

steal range. Because workers should not steal tasks outside of the

task group in their current steal range, we must consider which

queue they should steal a task from. For example, thieves whose

current steal range is [j,k] in Figure 10 should not steal tasks in

[k, P − 1] or [0, j]. To avoid inappropriate steals, we split the task

queue into two parts: the local queue and the migration queue, as
also remarked in Section 4.2.3. In that case, thieves whose current

steal range is [j,k] should steal tasks (i) in the local queue of worker

j, (ii) in the migration queue of worker k , or (iii) in both queues of

other workers in [j,k].
We should also consider whether or not to migrate search-root

tasks back to its owner, especially for complex DAGs. If any of the

ancestors of the current steal range are already active, the tasks

migrated during a search can be stolen from outside of the current

steal range even if we start a search. Because of this, when any of

the ancestors of the current steal range are already active, workers

do not migrate a search-root task back to its owner and do not start

a search from the following task groups in the search-root task.

Note that steals rarely happen during a search, because workers

deactivate their current steal range when a task group in search-

root tasks is completed
5
. That is, steals within the current steal

range are suppressed during the search from the next task group.

Then, contention of the migration queue can be avoided (see also

Theorem 1), and the search can be done quickly. Though tasks can

be stolen from outside of the current steal range if an ancestor of

the current steal range is activated during a search, it does not occur

so frequently.

5
The parent steal range is activated when the search-root task is completed without

encountering the next task group
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# of sockets microarchitecture model # of cores frequency L1 data cache L2 cache L3 cache

4 Skylake Xeon Gold 6130 16 2.1 GHz 32 KB/core 1 MB/core 22 MB/socket

Table 1: CPU information used in the experiments.

4.3.2 Greediness . Assuming a search can be done quickly, we

can regard ADWS as an “almost” greedy scheduler, with some

modi�cation of the scheduler. The scheduler is greedy if workers

always execute tasks whenever ready tasks are present. We call

ADWS an “almost” greedy scheduler because this does not give any

theoretical proof and only describes the characteristics of ADWS.

By following the hierarchical localized work stealing algorithm,

it can be ensured that uncompleted tasks remain in the task group

of the current steal range, and workers are expected to �nd un-

completed tasks in it. The scheduler is not greedy by that alone,

because there is a blocker: a search-root task. A search-root task

cannot be stolen by anyone, because it must be executed by the

owner. We can solve this problem by executing the search-root

task immediately after migration. It is su�cient to make it “almost”

greedy because there is at most one search-root task per worker

because of Theorem 2, and workers can always start to execute the

search-root task immediately. On a practical level, workers cannot

immediately start to execute a search-root task, but by executing

it when a worker completes a task or reaches a wait, some of the

greediness can be gained.

5 PERFORMANCE EVALUATION
We conducted experiments in a NUMA architecture to compare the

performance of ADWS to that of other existing scheduling methods.

The machine used in these experiments had 4 sockets, and each

socket had 16 cores (64 cores in total). Information about the CPUs

is shown in Table 1.

We implemented ADWS on MassiveThreads [23], which is a li-

brary for lightweight task parallelismwith thework-�rst scheduling
policy. We also implemented hierarchical work stealing (hierarchical
WS) as an existing locality-aware scheduling strategy. In hierarchi-

cal WS, workers �rst try to steal tasks from the nearest workers

in the memory hierarchy, and after several attempts, they try to

steal from a broader range of workers. This scheduling strategy was

proposed in [22], and work in [13] also adopted the same approach

as a part of their system.

We compared the performance of (i) random work stealing (ran-

dom WS), (ii) hierarchical WS, (iii) ADWS with no steal (i.e., deter-

ministic task allocation only), and (iv) ADWS (with deterministic

task allocation and hierarchical localized work stealing) for all

benchmarks. These scheduling algorithms were all implemented on

MassiveThreads. For the following measurements, we distributed

workers in a scatter manner. This meant that the workers were

distributed to all sockets as evenly as possible. In a scatter manner,

we can utilize all of the available LLC and high memory bandwidth

in NUMA. We compiled programs with gcc 5.4.0, and the version

of the linux kernel was 4.4.0-141-generic.

5.1 Heat2D Benchmark
We conducted the experiments on heat2D benchmark. Heat2D

benchmark calculates a heat transfer (5-point stencil) in a square

region (N ×N ). It repeatedly updates the temperature of every point

in the region. Since heat2D is iterative and highly memory-bound,

data locality can signi�cantly a�ect its performance.

We parallelized heat2D by using the divide-and-conquer algo-

rithm, which divides the region into four square regions recursively,

and the cuto� size was set to 64 × 64. To make it more memory-

bound, we optimized the calculation kernel by using SIMD instruc-

tions. We used two bu�ers to calculate the stencil and added the

padding of the cache line size (64 bytes in this case) to each matrix

to avoid cache con�icts. The experiments were conducted using

N = 2048, N = 4096 and N = 8192 matrices with single precision

�oating-point numbers, and they used 32 MB, 128 MB, and 512

MB of memory, respectively. We measured the execution time for

1000 iterations, and the experimental results were the median of

ten executions.

For comparison, we implemented constrained work stealing (con-

strained WS) [21], which is an existing locality-aware scheduling

policy speci�c to iterative applications. In constrained WS, the �rst

iteration executes an ordinary random work stealing while record-

ing the trace of work stealing using StealTree [20]. The next few

iterations then revise the scheduling, by combining the replay and

work stealing; workers basically follow the recorded schedule but

still perform work stealing when they become idle (RelWS). Finally,
subsequent iterations purely replay the recorded schedule without

performing any work stealing (StOWS). We iterated RelWS for the
�rst �ve iterations, because it showed the best performance.

Figure 11 shows the speedupwith numactl -iall.With numactl
-iall command, allocated memory is distributed across NUMA

nodes almost evenly. The base case is the execution time of a single

core execution without numactl -iall. As shown in Figure 11,

OpenMP static and ADWS performed better than others. In many

cases, the performance of OpenMP static is better than that of

ADWS, which is because of tasking overheads of ADWS. Hierarchi-

cal WS did not improve the performance because it was oblivious

to the locality of iterative applications. Constrained WS worked

better than random WS and hierarchical WS, but the performance

was worse than that of OpenMP static and ADWS.

There are two reasons for the performance di�erence between

ConstrainedWS and ADWS. One is that the execution of the �rst it-

erationwas scheduled by randomWS, and data locality among tasks

within a worker or socket was not optimized. In this experiment

setting, the size of leaf tasks was relatively small (64×64); therefore

the e�ect of data locality among close tasks was signi�cant, which

leaded to the lower performance of constrained WS. In addition to

this, the number of branches of StealTree monotonically increases

as work stealing occurs in RelWS, which means that the DAG gets

decomposed into smaller parts and data locality among tasks gets

worse. The other reason is that the idle time of workers, caused

by the change of execution time for each task, was not negligible.

Tasks moved from the previous iteration by work stealing in RelWS
have relatively bad data locality at this time, and the execution time

of them is usually longer than that of tasks not stolen. Then data
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locality of these stolen tasks improves in the next iteration and their

execution time gets shorter, which causes additional idle time for

workers. This problem can be amortized by increasing the number

of iterations for RelWS, but there is a trade-o� between the idle time

and the over-decomposed issue remarked above. On the other hand,

in ADWS, the task mapping is nearly optimal and the idle time of

workers is negligible because of its greediness (Section 4.3.2).

In Figure 11a, OpenMP static andADWS show superlinear speedup.

The performance of the single core execution was relatively bad

because the data (32 MB) did not �t into one L3 cache (22 MB) in

single core execution, but it �tted into four L3 caches with multi-

ple sockets. Since OpenMP static and ADWS caused few DRAM

accesses, they showed superlinear speedup.

Figure 11b shows the speedup with N = 4096, the data of which

does not �t into L2 cache. The ratio of change in the speedup of

ADWS (no steal) or ADWS increased with the number of workers.

This can be explained by examining the cache architecture. The

cache architecture of Skylake is non-inclusive cache, which means

the L2 cache can have data that the L3 cache doesn’t have. Therefore,

the total available cache size increases with the number of workers,

and the performance improves accordingly.

When N = 8192, the performance di�erence became small (Fig-

ure 11c). This was because the data (512 MB) did not �t into the

caches and accesses to DRAM occurred frequently. In this case, the

physical location of data was determined by numactl -iall policy,
and many remote memory accesses occurred regardless of schedul-

ing policies. OpenMP static and ADWS can avoid this problem by

utilizing �rst-touch policy, which is the default memory allocation

policy in Linux. In heat2D benchmark, we can allocate most of the

memory to each worker’s local DRAM by simply parallelizing the

initialization of matrices in the same manner as the calculation.

Figure 12 shows the speedup when using �rst-touch policy with

parallel initialization. The performance of OpenMP static andADWS

improved, whereas that of others did not change from Figure 11. The

performance improvement clearly appears in Figure 12c compared

to Figure 11c. In this case, ADWS performed better than determin-

istic schedulers (ADWS (no steal) and OpenMP static), which indi-

cates there were load imbalances even if the load can be statically

divided. ConstrainedWS could not take advantage of NUMA-aware

memory allocation, because tasks are over-decomposed and the

size of tasks are small compared to the page size. Figure 12a shows

ADWS was up to nearly six times faster than random WS.

5.2 Matrix-Multiplication Benchmark
For the matrix-multiplication (matmul) benchmark, we calculated

the multiplication of dense square matrices with size N × N . The

matmul benchmark is non-iterative and has a complex DAG. The im-

plementation of the matmul benchmark is described in Section 4.1.2.

The values of the matrices were single precision �oating-point num-

bers, and the size of matrices used were N = 2048, N = 4096 and

N = 8192. We also added padding to each matrix as well as heat2D,

and we set the cuto� size to 128x128. Since the naive implementa-

tion of matmul was rather computation-bound, we optimized the

calculation kernel by using SIMD instructions. The experimental

results were the median of ten executions.

Figure 13 shows a comparison for GFLOPS achieved in the mat-

mul benchmark. The theoretical peak performance in this environ-

ment was 134.4 GFLOPS per core at 2.1 GHz. We conducted this

experiment with numactl -iall. In all cases in Figure 13, ADWS

outperformed other methods with a large core count. Although the

performance of hierarchical WS was better than that of randomWS,

ADWS performed the best. Notably, ADWS achieved 4085 GFLOPS

with N = 4096, which is nearly half of the theoretical peak GFLOPS

with 64 cores (8601.6 GFLOPS).

The performance of ADWS (no steal) was poor because of the

problem with a complex DAG (described in Section 4.2.4). Closer

scrutiny of the result reveals that ADWS (no steal) performed

well when the number of workers was a power of two. As pre-

viously mentioned, we divided the matrices into four submatrices

and spawned four tasks with the same amount of work. Then, when

the number of workers was a power of two, the range of workers

was not divided in the middle of the work region, and the problem

with a complex DAG did not occur. The result shows that even if

deterministic task allocation had a problem, ADWS performed well

because of hierarchical localized work stealing.

5.3 Calculation of Particle Interactions (SPH)
We also compared the performance of ADWS with that of the exist-

ing implementation of FDPS [17]. First, the original implementation

of FDPS makes an array of leaf nodes by traversing the octree, and

then uses OpenMP for loop for the array of leafs. Because the

amount of work for each leaf can vary and a static scheduling can

cause signi�cant load imbalances, it uses a dynamic scheduling

policy (schedule(dynamic, 4)). Section 4.1.1 shows the task paral-

lel implementation for the calculation of particle interactions. In

the task parallel implementation, the computation was parallelized

while traversing the octree. This is more straight-forward than the

original implementation using loop-based parallelism.

To evaluate the performance, we used FDPS to write particle

simulation code of Smoothed Particle Hydrodynamics (SPH). It simu-

lated the dynamics of water (dam breaking) as shown in Figure 15,

and we referenced [5] to implement it. With SPH, short-range in-

teractions of particles within an e�ective radius are calculated at

every iteration. We modi�ed FDPS (v5.0b) to implement the task

parallel version. In this study, we only compared the performance

of the calculation of particle interactions, although we can paral-

lelize other parts such as building trees by using task parallelism as

ExaFMM does [31].

We showed a visualization of the task distribution in Figure 1.

With randomWS, tasks were distributed randomly and data locality

was poor. The task distribution of OpenMP dynamic was similar

to that of random WS (not shown due to space limitations). With

ADWS (no steal), close tasks were allocated to close workers and

data locality was good, but it could not dynamically balance the

load. ADWS dynamically balanced the load while maintaining most

of data locality.

Figure 14 shows a comparison of the speedup of 2D and 3D

simulation of the dam breaking with N particles. We measured

only the particle interaction parts for 1000 iterations, and the result

was the median of ten executions. We conducted this experiment
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Figure 11: Comparison of the speedup of heat2D benchmark with numactl -iall. The straight dotted line represents the ideal
linear speedup.
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Figure 12: Comparison of the speedup of heat2D benchmark with NUMA-aware initialization with the �rst-touch policy. The
straight dotted line represents the ideal linear speedup.
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Figure 13: Comparison ofGFLOPS ofmatmul benchmark. The straight dotted line represents the theoretical peak performance
(134.4 GFLOPS/core).
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Figure 14: Comparison of speedup of 2D and 3D dam breaking simulation using FDPS. The straight dotted line represents the
ideal linear speedup.
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Figure 15: 2D dam breaking simulation with SPH

with numactl -iall, and the base case was the execution time of

serial execution without OpenMP nor MassiveThreads.

Figure 14a and 14b show the speedup of the 2D simulation. In

both cases, the performance of ADWSwas better than that of others.

Figure 14c shows the speedup of the 3D simulation, and only ADWS

(no steal) performed worse than others. This indicates that data

locality did not a�ect the performance (computation-bound) and

only load imbalance a�ected the performance. From these results,

ADWS is considered to be robust to load imbalance as well as

OpenMP dynamic or random WS, while maintaining good data

locality.

5.4 Sensitivity to Wrong Estimation of Work
In the heat2D benchmark, the region is divided into four parts

with the same size; the work ratio of child tasks in a task group

is 1 : 1 : 1 : 1. In this experiment, we introduced parameter α ,
which meant the maximum error ratio to the correct amount of

work. Now we de�ne terms deterministic wrong estimation and

random wrong estimation. In deterministic wrong estimation, the
work ratio was �xed to 1 − α : 1 − 0.5α : 1 + 0.5α : 1 + α at every

iteration. In random wrong estimation, the work ratio was set to

1+r1α : 1+r2α : 1+r3α : 1+r4α , where ri was an uniform random

number in the range [−1, 1) which is newly generated at every

iteration. We used the heat2D benchmark to clarify sensitivity to

incorrect estimation with N = 4096 and with 64 workers, changing

parameter α .
Figure 16 shows the result. The execution time increased as

α increased. Within α < 10%, the performance didn’t degrade

more than about 30%. Even when α = 100%, some of data locality

remained and the performance was better than that of random

WS. When the estimation of work was largely wrong, the ADWS
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Figure 16: Mean execution time of one iteration in heat2D
benchmark for 10k iterations. alpha means the maximum
error ratio of an estimated amount of work for each task.

Table 2: Mean execution time of �b benchmark for 10 times

n = 20 n = 40 n = 50

Random WS 335 µs 265 ms 32.5 s

ADWS 211 µs (-37%) 289 ms (+9.1%) 35.5 s (+9.2%)

scheduler turned into random work stealing scheduler quickly

because of the management of steal ranges, and there were few

additional overheads over random work stealing (recall that the

return migration of search-root tasks does not occur under random

work stealing state in ADWS).

5.5 Overhead Measurement on Fib Benchmark
The �b benchmark calculates a Fibonacci number (f ib(n) = f ib(n−
1) + f ib(n − 2)), which is parallelized by spawning f ib(n − 1) and

f ib(n − 2) as tasks. Tasks in the �b benchmark have very little

computation, so it is often used to measure task scheduler overhead.

We used 64 cores with numactl -iall to measure the overhead

of ADWS relative to random WS. We speci�ed 2 and 1 as a rough

estimated amount of work for f ib(n − 1) and f ib(n − 2). The last

task (f ib(n − 2)) was not spawned as a task to reduce the overhead.

The result with 64 cores with numactl -iall is shown in Table 2.
ADWS has only about 9% overhead compared with random WS

when su�cient parallelism exists (n = 40, 50). Surprisingly, when

the size of the computation was small (n = 20), ADWS was quite

faster than random WS. This was because the search was done

quickly in ADWS (as discussed in Section 4.3.1). In random WS,

the initial distribution of tasks was relatively slow because of lock

contention.

6 CONCLUSION AND FUTUREWORK
We introduced Almost Deterministic Work Stealing (ADWS) and

showed ADWS outperformed other existing scheduling methods

with memory-bound applications. Although the applications of

ADWS are limited to cases in which programmers can specify the

amount of work for each task in advance, performance improved

signi�cantly if the amount of work was correctly speci�ed. Specify-

ing the amount of work is certainly a burden on programmers, but

it is not hardware-speci�c and the programming model is entirely

processor-oblivious. Even a rough estimate enables hierarchical

localized work stealing to dynamically compensate load imbalance

in a locality-aware manner.

As future work, we consider it is possible to automatically esti-

mate the amount of work for each task in iterative programs. By

using this runtime approach, it is also expected that we can get

more precise estimates of the amount of work than ones speci�ed by

programmers. Furthermore, because ADWS is compatible with arbi-

trary memory hierarchies because of its design, we expect to prove

that ADWS e�ciently runs even on distributed environments.
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