
Distributed Continuation Stealing is More Scalable
than You Might Think

Shumpei Shiina
The University of Tokyo

Tokyo, Japan
shiina@eidos.ic.i.u-tokyo.ac.jp

Kenjiro Taura
The University of Tokyo

Tokyo, Japan
tau@eidos.ic.i.u-tokyo.ac.jp

Abstract—The need for load balancing in applications with
irregular parallelism has motivated research on work stealing.
An important choice in work-stealing schedulers is between
child stealing or continuation stealing. In child stealing, a newly
created task is made stealable by other processors, whereas in
continuation stealing, the caller’s continuation is made stealable
by executing the newly created task first, which preserves the
serial execution order. Although the benefits of continuation
stealing have been demonstrated on shared memory by Cilk
and other runtime systems, it is rarely employed on distributed
memory, presumably because it has been thought to be difficult
to implement and inefficient as it involves migration of call
stacks across nodes. Akiyama and Taura recently introduced
efficient RDMA-based continuation stealing, but the practicality
of distributed continuation stealing is still unclear because a
comparison of its performance with that of child stealing has
not previously been performed.

This paper presents the results of a comparative performance
analysis of continuation stealing and child stealing on distributed
memory. To clarify the full potential of continuation stealing,
we first investigated various RDMA-based synchronization (task
join) implementations, which had not previously been fully inves-
tigated. The results revealed that, when the task synchronization
pattern was complicated, continuation stealing performed better
than child stealing despite its relatively long steal latency due to
stack migration. Notably, our runtime system achieved almost
perfect scaling on 110,592 cores in an unbalanced tree search
(UTS) benchmark. This scalability is comparable to or even
better than that of state-of-the-art bag-of-tasks counterparts.

Index Terms—work stealing, fork-join parallelism, futures,
work-first scheduling, task-based runtime systems, RDMA

I. INTRODUCTION

Load balancing is crucial to performance in parallel comput-
ing, especially for algorithms that yield irregular parallelism.
As manual load balancing is cumbersome and error-prone,
runtime-level support for dynamic load balancing is substan-
tially important. Many parallel runtime systems that efficiently
support dynamic load balancing have been developed and used
in production [1], [2], [3], [4], [5], [6], [7], [8].

Work stealing [9] is arguably the most widely used load
balancing algorithm for irregular parallelism: each processor
has a local task queue, from which other idle processors try
to steal tasks by randomly selecting a “victim.” An important
scheduling choice in work stealing is between child stealing or
continuation stealing 1 . In child stealing, a processor places a

1Child stealing is also called help-first or parent-first scheduling, and
continuation stealing is also called work-first or child-first scheduling.

newly created child task in the local task queue to potentially
be stolen by another processor and continues to run the parent
task. In continuation stealing, the processor immediately exe-
cutes the newly created child task and leaves the continuation
of the parent task in the queue. Continuation stealing preserves
the serial execution order as much as possible, because a task
is executed as an ordinary function call unless its parent task
is stolen. This helps to efficiently resolve task synchronization
in fork-join programs (“join” primitives) and prove theoretical
bounds on execution time, space, communication [9], and data
locality [10], as further discussed in Section II. Because of
these beneficial characteristics, many shared-memory runtime
systems, including Cilk [1], [2], use continuation stealing.

On distributed memory, most of the existing work-stealing
implementations are child stealing, and many child-stealing
implementations have shown good scalability with the use of
remote direct memory access (RDMA) [11], [12], [13]. The
introduction of RDMA has eliminated the need for frequent
interruptions to the victim processors, which are otherwise
needed for steal attempts with two-sided (message-based)
communication [14], [15]. Nevertheless, continuation stealing
is still rare on distributed memory. This is presumably due to
two assumptions:

1) Implementing continuation stealing as a library with
native (unmodified) C/C++ compilers is difficult because
it involves migration of call stacks across nodes.

2) Continuation stealing is less efficient than child stealing
because a call stack is typically larger than the function
pointer and its arguments needed for child stealing.

Akiyama and Taura [16], [17] challenged the first assump-
tion by introducing an efficient stack migration scheme over
RDMA that does not require special compiler support. How-
ever, the correctness of the second assumption is still unclear;
there have been no reports in the literature of a performance
comparison between continuation stealing and child stealing
on distributed memory. The primary goal of this paper is to
explore the true potential of distributed continuation stealing
by comparing its performance with that of child stealing.

To determine the full potential of distributed continuation
stealing, we first investigated efficient task synchronization
(join) strategies over RDMA, which were not covered by pre-
vious work. In particular, the implementation by Akiyama and

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution

to servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/CLUSTER51413.2022.00027

Taura does not allow for migration of tasks suspended at a join.
Because they cannot be resumed by other processors even after
they become ready for execution, available parallelism is re-
duced. Thus, we devised an RDMA-based technique to migrate
and resume tasks suspended at a join immediately after they
become ready, which is in fact a common practice in shared-
memory implementations (e.g., Cilk). In addition, we devised
an efficient memory management technique for dynamically
allocated RDMA-accessible objects for task synchronization
in continuation stealing. Our evaluation experiments showed
that these join optimizations improved performance by up to
40% compared with the baseline.

Using a continuation-stealing runtime system implementing
these two techniques, we conducted performance analysis of
continuation stealing and child stealing. Although continuation
stealing incurred longer steal latency than child stealing, the
average steal latency was less than 20% higher than that of
child stealing. Moreover, the experiments demonstrated that
continuation stealing handled join primitives more efficiently,
resulting in better overall performance than child stealing when
the task synchronization pattern was complicated.

Furthermore, we used the unbalanced tree search (UTS)
benchmark [18] to compare our continuation-stealing runtime
implementation with existing task-parallel runtime systems
(SAWS [12], Charm++ [19], [20], and X10/GLB [21], [22]).
The results show that our runtime system was as scalable as
or even more scalable than them. Notably, our continuation-
stealing runtime system demonstrated 96.4% parallel effi-
ciency on 110,594 cores. This is a surprising result because
our UTS implementation is based on a straightforward fork-
join parallelization of tree traversal, whereas other UTS im-
plementations are based on a bag-of-tasks paradigm, in which
task dependency cannot be described and global termination
detection is needed.

The task implementation of our continuation-stealing run-
time system is not only for fork-join primitives but also for
more general futures. In other words, tasks do not have to be
joined with their parent; the handler of a spawned task, called
a future, can be passed to any other tasks. Thus, our runtime
system can deal with a wider range of dependency patterns,
which is demonstrated by the longest common subsequence
(LCS) benchmark used in our evaluation. Our LCS benchmark
makes heavy use of futures to represent the complicated
dependency pattern (wavefront) by recursively decomposing
blocks. The evaluation results show that the capability of task
migration (both continuation stealing and task migration at
joins) is indispensable to achieving good performance; lack of
task migration led to worse performance by an order of magni-
tude. Our continuation-stealing runtime system with both task
migration capabilities achieved the highest performance (close
to the theoretical bounds) on nearly 10k cores.

II. WORK STEALING

Work stealing [9] is arguably the most widely used load
balancing algorithm today. We define workers as virtualized
processors, which are typically substantiated as processes or

kernel-level threads. In work stealing, each worker maintains
its own task queue, from which and to which the local
worker pops and pushes tasks. When the local queue is empty,
the worker attempts to steal a task from another worker by
selecting victims uniformly at random. Typically, the task
queue is implemented as a double-ended queue (we assume
that the THE protocol [2] is used); the worker pushes tasks to
and pops tasks from the same end of the queue, whereas other
workers steal tasks from the other end of the queue. Hence,
local push/pop operations follow last-in first-out (LIFO) order,
and steal operations follow first-in first-out (FIFO) order. Thus,
the oldest task in the queue, which is expected to have the
largest amount of work, is always stolen.

In the following of this section, we first discuss pros
and cons about child stealing and continuation stealing in
Section II-A and demonstrate by an example a shortcom-
ing in child stealing when handling task join primitives in
Section II-B. We then explain the current status of support
for thread migration on distributed memory in Section II-C
and finally introduce prior work on distributed continuation
stealing, uni-address threads, in Section II-D.

A. Child Stealing and Continuation Stealing

As noted above, an important choice in work stealing is
between child stealing or continuation stealing, which are
illustrated in Fig. 1. Worker W1 first runs task Tp, which
spawns child task Tc. In child stealing,W1 continues executing
Tp after spawning Tc and pushes Tc to the local task queue.
In continuation stealing, W1 first executes Tc upon spawning,
leaving the continuation of Tp subject to work stealing.

The benefit of child stealing is its simple and portable imple-
mentation [23]. Each stealable task can be simply represented
as a function pointer (or a serialized closure) and its arguments
because the task is stolen before execution has begun. This
simplicity is the reason many shared-memory tasking runtime
systems use child stealing [23], [24], [3], [25]. In contrast,
the implementation of continuation stealing is more involved
because stealing the continuation of an already started task is
not trivial. Many efforts have been put into compiler support
for continuation stealing [26], [1], [2] and user-level threading
libraries [7], [27] to save and restore continuation states.

Despite its implementation difficulties, continuation stealing
nevertheless has benefits. One benefit is that it preserves the
serial execution order (i.e., the program order with task-related
keywords removed). This helps to prove good asymptotic
bounds on execution time, space, communication [9], and
data locality [10]. Blumofe and Leiserson [9] proved that the
execution time of continuation stealing on P processors is
bounded by TP ≤ T1/P + O(T∞), where T1 is the total
amount of work (i.e., the serial execution time) and T∞ is
the critical path length (span) of the task graph (i.e., the
ideal execution time on an infinite number of processors).
This bound is analogous to the greedy-scheduling theorem or
Brent’s theorem [28] (TP ≤ T1/P + T∞) for an ideal greedy
scheduler. A scheduler is greedy if any pair of a ready task
and an idle worker does not exist at any point in time, i.e., an

1 thread Tp = spawn([=]{
2 ...
3 thread Tc = spawn([=]{ Bc; });
4 Bp;
5 Tc.join();
6 ...
7 });

(a) Pseudocode

Bp

Bc

Tp

Tc

Spawn Join

W2: steal

W1: parent first

Likely to block

(b) Child stealing

Bp

Bc

Tp

Tc

Spawn Join

W2: steal

W1: child first
Unlikely to block

(c) Continuation stealing

Fig. 1. Illustration of child stealing and continuation stealing. Parent task Tp spawns task Tc, computes Bp, and joins Tc. Child task Tc computes Bc and
exits. Worker W1 first executes Tp and moves on to Bp or Tc upon spawning. W2 can steal either Tp or Tc left in the task queue.

idle worker immediately executes a ready task if one exists,
which is an important property in general to keep processors
as busy as possible.

B. Handling Task Synchronization (Join)

How to join tasks is as important as how to steal tasks in
task-parallel programs, but child stealing is problematic for
handling join. This is because child stealing is likely to be
suspended at a join because the parent is preferably executed
rather than the child. As shown in Fig. 1b, because the join for
Tc belongs to the parent, Tp, the parent-first order is likely to
reach the join point before the child is completed. Note that
reaching an unresolved join itself is not a problem. Unless
Tc is stolen, W1 can immediately execute Tc by popping it
from the local task queue at the join point [23]. Then, once
Tc is completed, W1 returns to the join point and executes the
continuation of Tp. Along this path, the continuation of the
join is executed immediately after it becomes runnable.

A problem arises when Tc is stolen by another worker
(W2 in the figure). Supposing that Bp and Bc have the same
amount of work, W1 is likely to complete Bp before W2

completes Bc because of the steal delay. Thus, W1 is likely to
reach the join point before Tc is completed. W1 thus initiates
work stealing by suspending Tp at the join. We call such an
unresolved join resulting from a steal event an outstanding
join. An outstanding join may not be resumable even after Tc
is completed by W2 if W1 is busy running another task and
migration of suspended tasks is impossible. In child stealing,
it is typically impossible to migrate an already started task
to another worker, because of its simple task representation.
Thus, child stealing can yield many outstanding joins, most of
which may not be immediately resumed, which can severely
limit available parallelism.

Conversely, continuation stealing is unlikely to yield an out-
standing join. Moreover, even if an outstanding join appears,
it can be immediately resumed because continuation stealing
should already support dynamic task migration.

C. Suspending and Migrating Threads

Even aside from work stealing, the generic suspension
capability for tasks is important, as evidenced by the extensive
research on the suspension capability of user-level threads on
shared memory [6], [7], [8], [29], [27], [30]. In this paper, we
use the terms “tasks” and “threads” interchangeably. The sus-
pension capability is also useful for efficiently implementing a

generic yield operation and other synchronization mechanisms
(e.g., locks, barriers, and condition variables).

Many child-stealing runtime systems that operate on dis-
tributed memory, including Scioto [31], [11], SAWS [12], and
X10/GLB [21], [22], are based on the bag-of-tasks (BoT)
paradigm and their tasks cannot be suspended. Several dis-
tributed child-stealing runtime systems, including Satin [32],
KAAPI [33], HotSLAW [13], and Grappa [34], support sus-
pension at thread synchronization (e.g., at joins), but their
thread implementations are tied tasks, which means that a
task cannot be migrated to another worker once it starts to run.
Thus, they are also subject to the performance problem caused
by outstanding joins. Compared with the many user-level
thread implementations on shared memory, thread suspension
on distributed memory has not been well investigated.

D. Uni-Address Threads

A naive approach to achieving thread migration across
nodes, without special compiler support, is to copy a thread
stack to the same virtual address on the target node. The
virtual address of the stack has to be preserved because the
stack may contain pointers to local stack variables. In the iso-
address scheme [35], which is used in Charm++ [19], [20]
and Adaptive MPI [36], a globally unique virtual address is
assigned to each stack in order to prevent virtual address
overlapping. However, this can consume a huge amount of
virtual address space, which is problematic in RDMA because
memory for thread stacks would need to be pinned in advance.

To reduce address space consumption, the uni-address
scheme was devised by Akiyama and Taura [16], [17]. The
idea is to place thread stacks at the same virtual address only
while threads are running. When a thread is suspended, its
stack is evacuated to an arbitrary virtual address to make
room for another thread to run. When the suspended thread
is resumed, its stack is brought back to the virtual address to
which it was first allocated. Therefore, the virtual addresses of
thread stacks are no longer globally unique, reducing overall
virtual address consumption. Note that this does not mean
that threads at the same virtual address cannot be executed
at the same time as each worker has its own address space.
We call a memory region for running threads a uni-address
region and one for suspended threads an evacuation region.
Both regions are pinned to physical memory accessible by
RDMA. Workers need to have the same virtual address for
the uni-address region, but not for the evacuation region.

Uni-address region

W1

Uni-address region

W2

V
ir

tu
al

ad
dr

es
s

TA
TB
TC

TA
1. Spawn

2. Die

3. Steal

Uni-address region Uni-address region

V
ir

tu
al

ad
dr

es
s

Evacuation region

W1

Evacuation region

W2

TD

TD

TE

TE4. Suspend

5. Resume

Possible?

Fig. 2. Stack management in uni-address threads.

One key point of the uni-address scheme is that it is
optimized for continuation stealing. To avoid frequent copying
of thread stacks between the uni-address region and the
evacuation region, a new stack is placed on top of the current
thread stack so that the virtual addresses of thread stacks with
a parent-child relationship do not overlap. Fig. 2 illustrates the
flow of continuation stealing with uni-address threads.

1. Spawn: When TB creates a new thread TC , TC’s stack
is placed immediately above TB’s stack. The virtual address
and size of TB’s stack are recorded in the task queue to be
potentially stolen.

2. Die: When TC is completed, the execution of TB is
resumed in the same way as an ordinary subroutine returns,
unless TB has already been stolen by another worker.

3. Steal: WhenW2 steals TA fromW1, the call stack of TA
at W1 is copied to the same virtual address at W2, preserving
pointers to local stack variables.

4. Suspend: When TD is blocked due to an unresolved join,
for example, TD’s call stack is temporarily moved to any
virtual address in the evacuation region.

5. Resume: When TE is resumed, TE’s stack is moved from
the evacuation region to the virtual address to which it was
previously assigned.

The original uni-address thread implementation has short-
comings at joins; e.g., thread migration at joins (indicated by
the dashed arrow in Fig. 2) is not allowed.

III. JOINING THREADS OVER RDMA

As briefly mentioned in Section II-D, efficient join imple-
mentations on distributed memory have not been well inves-
tigated. This section first examines different joining strategies
in Section III-A and then proposes an efficient memory
management technique in Section III-B.

A. Joining Strategy

In general, joining strategies for work stealing can be
classified as either stalling or greedy [37]. In the stalling
strategy, threads are not migrated to other workers across a
join, whereas in the greedy strategy, threads can be migrated
to other workers so that they are resumed immediately after be-
coming ready. On shared memory, for example, Intel TBB [3]
uses the stalling strategy and Cilk uses the greedy strategy.

We introduce several notations to explain our algorithms.
The location of a variable specifies where the variable is;
it typically consists of the worker ID (rank) of the owner,
the virtual address, and the size. Type Loc(T) specifies the

1 Struct THREADENTRY
2 retval :: return value of the joined thread function
3 flag :: completion status of the joined thread (default: 0)
4 Function DIE(E :: Loc(THREADENTRY), retval)
5 put E.retval ← retval
6 put E.flag ← 1
7 nextThread ← POPFROMTHREADQUEUE()
8 if nextThread is found then
9 resume nextThread .context

10 else
11 resume scheduler .context
12 Function JOIN(E :: Loc(THREADENTRY))
13 get f ← E.flag
14 while f = 0 do // The joined thread has not been completed.
15 suspend context do
16 PUSHTOWAITQUEUE(context)
17 resume scheduler .context
18 get f ← E.flag
19 get retval ← E.retval
20 FREEREMOTE(E)
21 return retval

Fig. 3. Implementation of stalling join over RDMA.

location of a variable of type T . The “get v ← L” statement
copies the remote variable at location L to local variable v,
and the “put L← v” statement copies local variable v to the
remote variable at L. The “fetch and add (L, v)” statement
atomically adds v to the remote variable at L and returns the
original value. The “Suspend context do” block first saves
the current execution state to context and then executes the
statements in the block on a separate context (stack). The saved
context can be resumed by executing the “resume context”
statement, which discards the current execution context.

1) Stalling Join: Fig. 3 shows the stalling join implementa-
tion in the original uni-address threads [16]. In the following,
without loss of generality, we consider only two threads: a
joining thread and a joined thread. The joining thread waits
for completion of the joined thread by the JOIN function,
and the joined thread calls the DIE function when completed.
In continuation stealing, the joining thread does not know
where the joined thread is, and vice versa, as threads can be
dynamically migrated. Thus, we allocate a thread entry to the
memory where the joined thread was originally spawned, so
that the joined thread and joining thread can communicate via
this RDMA-accessible thread entry. A thread entry’s location
is used as a thread handler, and both the DIE and JOIN function
receive it as an argument. The type THREADENTRY has two
fields: retval , the return value of the thread, and flag , which
indicates the exit status of the joined thread.

When the joined thread is completed, it first puts the return
value (line 5) and then sets the flag in the thread entry (line 6).
The joining thread waits for the flag to be set in a loop
(lines 14–18), after which it gets the return value of the joined
thread (line 19). Each time the flag check fails, it switches to
the scheduler context to initiate work stealing; at the same
time, its current context is saved and pushed into the wait
queue. A wait queue is a per-worker FIFO queue in which

22 Struct THREADENTRY
23 retval :: return value of the joined thread function
24 flag :: atomic flag for greedy join (default: 0)
25 ctxloc :: location of the saved context of the joining thread
26 Function DIE(E :: Loc(THREADENTRY), retval)
27 put E.retval ← retval
28 nextThread ← POPFROMTHREADQUEUE()
29 if nextThread is found then // The parent has not been stolen.
30 put E.flag ← 1
31 resume nextThread .context
32 else // The parent has already been stolen.
33 f ← fetch and add (E.flag , 1)
34 if f = 0 then // The joined thread won the race.
35 resume scheduler .context
36 else // The joined thread lost the race.
37 get C ← E.ctxloc
38 get context← C
39 FREEREMOTE(C)
40 resume context
41 Function JOIN(E :: Loc(THREADENTRY))
42 get f ← E.flag
43 if f = 0 then // The joined thread seems to be running.
44 suspend context do
45 put E.ctxloc ← LOCATIONOF(context)
46 f ← fetch and add (E.flag , 1)
47 if f = 0 then // The joining thread won the race.
48 resume scheduler .context
49 else // The joining thread lost the race.
50 resume context
51 get retval ← E.retval
52 FREEREMOTE(E)
53 return retval

Fig. 4. Implementation of greedy join over RDMA.

suspended threads are stored. Each time a steal attempt fails,
the scheduler pops a thread from the wait queue and resumes
its execution in a round-robin fashion. A suspended thread
cannot be executed until it is popped from the wait queue, even
if it becomes runnable, which makes this scheduler nongreedy.

2) Greedy Join: In the greedy join implementation, the
continuation of a join is executed by the worker who runs
the joined thread or the joining thread, whichever reaches
the synchronization point later. Therefore, the continuation
of a join is executed immediately after it becomes runnable.
While Cilk uses a mutex for implementing greedy join, the
use of atomic operations on shared memory has been investi-
gated [38], [39]. Borrowing this idea, we consider an efficient
greedy join implementation using RDMA atomic operations.

Fig. 4 shows our greedy join implementation. The basic
idea is that the two threads race on an atomic variable, and the
worker who runs the loser (who executes the atomic operation
later) runs the continuation of the join. However, calling an
RDMA atomic operation at every join and die can be too
costly. To avoid frequent atomic operations, we devised a
technique based on the work-first principle [2]. The idea is
for the joined thread to try to pop the parent thread from
the queue (line 28) before racing with the joining thread.
Because we assume continuation stealing and the oldest-first
stealing strategy of the queue, the popped thread is guaranteed

to always be the parent of the joined (completed) thread [9].
If the parent thread is successfully popped, the corresponding
join is guaranteed to occur only after the joined thread has
died. Therefore, we can simply set the flag without atomic
operations (lines 29–31), which is in turn read by the same
worker at line 43. Along this fast path, the JOIN function can
be completed without suspending its execution.

If the parent thread has already been stolen when the joined
thread is completed, the execution moves to the slow path
(lines 32–40). Because the return value has been written at
line 27, an atomic fetch-and-add is executed to race with the
joining thread (line 33). If the joined thread wins the race,
it simply returns to the scheduler to initiate work stealing
(lines 34–35). Otherwise, it resumes the continuation of the
join (lines 36–40) because the joining thread has already been
suspended at the join. The joining thread performs the atomic
fetch-and-add (line 46) after saving its current context and
putting its location in the thread entry (line 45) so that the
joined thread can obtain the context immediately after the
race (lines 37–38). On rare occasions, the joining thread loses
the race even after it sees that the flag is unset (line 43)
and suspends its execution, in which case it resumes the
continuation of the join by itself (line 50).

Note that this algorithm is not limited to fork-join but is
also applicable to futures [40], [41]; the joining thread does not
need to be the parent of the joined thread. One limitation in this
implementation is that a future can have only one consumer,
but this limitation will be slightly relaxed in Section V-D.

B. Freeing Remote Objects

In continuation stealing, thread entries and suspended
threads can be freed remotely by any worker; we call such
RDMA-accessible objects remote objects. The FREEREMOTE
function in Fig. 3 and Fig. 4 receives a remote object’s location
and frees it (possibly) remotely. In the original implementation
by Akiyama and Taura, each worker has its own lock-protected
incoming queue to receive locations of remotely freed objects.
When freeing an object remotely, it acquires the lock of
the target queue, increments the counter, inserts the object
location into the buffer, and releases the lock; this operation
involves four round trips. When a worker collects remotely
freed objects in its local queue, it acquires the lock, frees all
received objects, sets the counter to zero, and releases the lock.

The key to improved performance is to move the overheads
of remote workers to the local worker because the cost of
local operations is much lower than that of remote operations.
Thus, we introduce an optimization called local collection. In
local collection, all remote objects are managed in a doubly
linked list by the local worker. When a remote object is newly
allocated, it is added to the list. When a remote object is freed
locally, it is immediately removed from the list and freed.
When it is freed remotely, its free bit is set by a remote put
operation in a nonblocking manner. When the total size of the
allocated remote objects exceeds a limit, the worker iterates
over the list and frees remote objects with a free bit set. This
strategy eliminates locks and involves only one communication

TABLE I
EXPERIMENTAL ENVIRONMENT.

ITO-A WISTERIA-O

Processor Intel Xeon Gold 6154 Fujitsu A64FX
Architecture Skylake-SP ARMv8.2-A + SVE
Frequency 3.0 GHz (Turbo 3.7 GHz) 2.2 GHz
of cores 36 (18× 2 sockets) 48
Memory DDR4 (192 GiB) HBM2 (32 GiB)
Interconnect InfiniBand EDR 4x (100 Gbps) Tofu Interconnect-D
Compiler GCC 11.2.0 Fujitsu compiler 4.5.0
Compile opts -O3 -march=native -O3 -Nclang
MPI Open MPI 5.0.x Fujitsu MPI 4.0.1
OS RHEL 7.3 RHEL 8.3

for freeing a remote object (which can even be nonblocking),
which greatly reduces the cost of remote workers.

IV. EVALUATION METHODOLOGY

Our primary interest here is performance comparison be-
tween different joining strategies (stalling vs. greedy join)
and stealing strategies (child vs. continuation stealing). To
analyze their performance, we implemented child stealing in
our runtime library by mimicking the prevalent distributed
child-stealing implementations (Section IV-B), in addition
to continuation stealing with both stalling and greedy join.
We use synthetic benchmarks (Section IV-C) to explore the
detailed performance characteristics and more realistic appli-
cations (the UTS and LCS benchmarks) for evaluation.

A. Experimental Settings

Our implementation is based on a C++ library Mas-
siveThreads/DM (an implementation of uni-address threads)
originally developed by Akiyama and Taura [16], [17]. To
achieve better portability, we modified it to use MPI-3
RMA [42] as a backend communication library, as high-
quality implementations for MPI-3 RMA are available today.
In addition, we fixed a few trivial performance issues in
MassiveThreads/DM and used it as the baseline for evaluation.

The experimental environment is summarized in TABLE I.
ITO-A is ITO supercomputer (subsystem A) at Kyushu
University [43], which is comprised of Intel Skylake pro-
cessors and InfiniBand Interconnect, and WISTERIA-O is
Wisteria/BDEC-01 supercomputer (Odyssey subsystem) at
the University of Tokyo [44], comprised of Fujitsu A64FX
processors and Tofu interconnect-D developed for Fugaku
supercomputer [45]. For ITO-A, we built a nightly version
(5.0.x) of Open MPI (Git commit hash: 85fec3a74fee)
with UCX [46] 1.11.0 and the osc_ucx_acc_single_
intrinsic option; it has better one-sided communication
performance than other MPI implementations [47]. When
allocating nodes in WISTERIA-O, we specified a 3D mesh
topology as close to a cube as possible, because it showed
the best performance for random work stealing. To obtain
stable performance results, we executed warm-up runs until
the performance results stabilized. Each point in the following
plots represents an average of 100 runs with an error bar

1 RecPFor(int n) {
2 if (n == 1) {
3 compute(M);
4 } else {
5 PFor(n);
6 thread th = spawn([=] { RecPFor(n / 2); });
7 RecPFor(n / 2);
8 th.join();
9 }

10 }

Fig. 5. Pseudocode of PFor and RecPFor benchmarks.

representing the 95% confidence interval unless explicitly
noted.

B. Implementations of Child Stealing

Assuming that thread implementations in child stealing are
tied tasks as discussed in Section II, we implemented only
stalling join for child stealing. We further classify stalling
join implementations into two types depending on the thread
suspension capability, run-to-completion (RtC) threads and
fully fledged (Full) threads, following the taxonomy of Iwasaki
et al. [29], [27].

RtC threads are simply realized by ordinary function calls.
When a RtC thread encounters an unresolved join, it calls the
scheduler function directly on top of its stack to find another
runnable task. If a runnable task is found, the task is executed
on top of the stack as in ordinary function calls. Meanwhile,
the unresolved join is “buried” and cannot be resumed until all
the tasks running on top of it are completed. This “buried join”
problem [25] can substantially reduce available parallelism.

Full threads avoid the buried join problem because each
thread has its own stack. When a task begins, it is assigned a
new separate stack (32 KB in our experiments). When encoun-
tering an unresolved join, it context-switches to another thread
by suspending itself (using assembly instructions). Suspended
threads are managed in the wait queue (Section III-A).

C. Synthetic Benchmarks

Fig. 5 shows the pseudocode of the synthetic benchmarks
we used for performance analysis: PFor and RecPFor. In the
PFor benchmark, a simple parallel loop is repeated multiple
times. Each parallel loop is implemented as a recursive binary
fork-join pattern (as in cilk_for in Cilk Plus [48]). In the
RecPFor benchmark, parallel tasks are recursively created as a
binary tree, and, at each recursion, parallel loops are repeatedly
executed. This computation pattern appears in many algo-
rithms (e.g., quicksort and decision tree construction [49]) in
which an input array is first manipulated by parallel loops and
then divided into two sub-arrays, and the same procedure is
applied to each sub-array recursively. The RecPFor benchmark
mimics this behavior.

PFor(int n) {
for (int k = 0; k < K; k++) {
parallel_for (int i = 0; i < n; i++)
compute(M); // run for duration of M

}
}

These benchmarks are parameterized by the number of
consecutive parallel loops in the PFor() function (K), the
execution time of each leaf task (compute() function)

Cont. Steal (local collection + greedy join) Cont. Steal (local collection) Cont. Steal (baseline) Child Steal (Full) Child Steal (RtC)

10 ms 100 ms 1 s
0

10

20

30

40

50

60

70

80

90

100

Ideal Execution Time

Pa
ra

lle
l E

ff
ic

ie
nc

y
(%

)

(a) PFor on ITO-A

100 ms 1 s 10 s
0

10

20

30

40

50

60

70

80

90

100

Ideal Execution Time

Pa
ra

lle
l E

ff
ic

ie
nc

y
(%

)
(b) RecPFor on ITO-A

10 ms 100 ms 1 s
0

10

20

30

40

50

60

70

80

90

100

Ideal Execution Time

Pa
ra

lle
l E

ff
ic

ie
nc

y
(%

)

(c) PFor on WISTERIA-O

100 ms 1 s
0

10

20

30

40

50

60

70

80

90

100

Ideal Execution Time

Pa
ra

lle
l E

ff
ic

ie
nc

y
(%

)

(d) RecPFor on WISTERIA-O

Fig. 6. Performance comparison between different joining strategies and steal strategies with synthetic benchmarks (PFor and RecPFor) on ITO-A with 576
cores (16 nodes) and on WISTERIA-O with 1728 cores (36 nodes). X-axis represents ideal execution time calculated by T1/P (see Section IV-C); y-axis
represents parallel efficiency (ratio of ideal execution time to measured execution time).

(M), and the problem size given to the root task (N). The
compute() function executes a fixed number of SIMD
fused multiply-add (FMA) operations. The number of FMA
operations was configured to run for a specified duration (M).
The total work of the PFor benchmark is T1 = KMN , and
that of the RecPFor benchmark is T1 = KMN log2 N+MN .
For evaluation, we fixed K = 5 and M = 10µs for both
benchmarks and varied N to change the problem size.

V. PERFORMANCE ANALYSIS AND EVALUATION

A. Performance Analysis of Joining Strategies

To evaluate the join techniques introduced in Section III, we
implemented a version with only local collection enabled and a
version with both local collection and greedy join enabled. The
baseline is the original implementation of MassiveThreads/DM
with a few trivial performance issues fixed.

The parallel efficiencies of the synthetic benchmarks with
various problem sizes (parameter N) are plotted in Fig. 6. The
ideal execution time is simply T1/P , where T1 is the theoret-
ical work discussed in Section IV-C, and parallel efficiency is
the ratio of the ideal execution time to the actual (measured)
execution time. In PFor on ITO-A, local collection achieved
up to 40% improvement over the baseline. Greedy join did not
contribute to the performance improvement, whereas in RecP-
For it did. This is because RecPFor has a more complicated
synchronization pattern than PFor; the PFor benchmark has
little work after a join at each recursion, while the RecPFor
benchmark has substantial work after each join as parallel
loops are repeated at each recursion. As a result, in RecPFor
on ITO-A, local collection improved performance by 27%
over the baseline, and greedy join improved performance by
an additional 8%. In total, our join techniques achieved up to
37% performance improvement over the baseline in RecPFor
on ITO-A. We observed similar results for WISTERIA-O.

B. Child Stealing vs. Continuation Stealing

Fig. 6 also shows the performance of child stealing with
Full and RtC threads. In PFor, the performance difference
between child and continuation stealing is small, whereas
in RecPFor, continuation stealing consistently outperformed

child stealing. Notably, continuation stealing was at most 1.3×
faster than child stealing (Full) and at most 4.8× faster than
child stealing (RtC) in RecPFor on WISTERIA-O. Note that
Full threads incur larger overheads on WISTERIA-O because
of their relatively large context switching costs and slower
processor speed.

TABLE II shows statistics for outstanding joins and steal
events, which were profiled using the largest problem sizes
in Fig. 6. The numbers of outstanding joins and successful
steals show that, in child stealing, a majority of successful
steals resulted in outstanding joins. The numbers for child
stealing (RtC) are exceptionally large because of the buried
join problem explained in Section IV-B. Continuation stealing
incurred by an order of magnitude fewer outstanding joins than
successful steals. This supports our assertion in Section II-B
that continuation stealing causes fewer outstanding joins.

Here, we introduce a metric, outstanding join time, which is
the duration since an outstanding join’s continuation became
resumable (i.e., both the joining and joined thread reach
the synchronization point) and until it is actually resumed.
This metric well characterizes the join implementations as
all three implementations based on stalling join have long
average outstanding join times, whereas continuation stealing
(greedy) has the shortest outstanding join time. Note that a
longer outstanding join time does not necessarily mean that
the scheduling is bad; for example, as long as all of the
workers are busy executing tasks, a long outstanding join
time is not a problem. However, it becomes problematic when
workers are idle, because idle workers should execute ready
tasks (outstanding joins) but do not execute them, which is
attributable to the scheduler [50].

To confirm that outstanding joins are related to the low
efficiency of child stealing, we plotted time series data for
RecPFor in Fig. 7. The filled (green) area shows how many
workers were busy executing tasks, and the line (purple)
plot represents the number of outstanding joins that were
runnable at that time. With continuation stealing, almost all
workers were busy all the time, and there were almost no
outstanding joins. In contrast, with child stealing (Full), the

TABLE II
STATISTICS OF JOIN AND STEAL EVENTS IN CHILD STEALING AND CONTINUATION STEALING ON ITO-A WITH 576 CORES (16 NODES) AND ON

WISTERIA-O WITH 1728 CORES (36 NODES). THE PROBLEM SIZES CORRESPOND TO THE LARGEST SIZES IN FIG. 6.

System Bench Steal Strategy Execution
Time

of
Outstanding

Joins

Avg.
Outstanding

Join Time

of Steals
(Successful)

Avg. Steal
Latency

(Successful)

of Steals
(Failed)

Avg. Stolen
Task Size

Avg. Task
Copy Time

IT
O

-A

PFor

Cont. Steal (greedy) 2.98 s 8672 14.1 µs 72831 28.8 µs 1108412 1789 bytes 5.85 µs
Cont. Steal (stalling) 2.98 s 6832 13965.4 µs 74091 28.9 µs 1089578 1687 bytes 6.02 µs
Child Steal (Full) 3.07 s 45920 1016.3 µs 76583 27.7 µs 4936210 56 bytes 3.76 µs
Child Steal (RtC) 3.01 s 61005 17096.3 µs 75777 27.1 µs 2661418 56 bytes 3.83 µs

RecPFor

Cont. Steal (greedy) 8.30 s 56876 15.0 µs 474991 31.6 µs 2853760 1845 bytes 5.72 µs
Cont. Steal (stalling) 8.33 s 72546 8128.6 µs 807097 30.4 µs 2561299 1790 bytes 5.68 µs
Child Steal (Full) 9.31 s 3208417 8237.9 µs 6038858 29.3 µs 16656796 55 bytes 4.18 µs
Child Steal (RtC) 48.64 s 40797378 297.6 µs 45092301 59.5 µs 1471927098 55 bytes 8.53 µs

W
IS

T
E

R
IA

-O PFor

Cont. Steal (greedy) 2.30 s 25425 6.6 µs 206857 20.7 µs 1602730 1289 bytes 3.47 µs
Cont. Steal (stalling) 2.30 s 19093 7006.5 µs 210601 20.9 µs 1583784 1286 bytes 3.50 µs
Child Steal (Full) 2.57 s 156116 165.2 µs 221887 19.8 µs 1341056 56 bytes 2.91 µs
Child Steal (RtC) 2.37 s 175845 8887.9 µs 218420 18.4 µs 1571870 56 bytes 2.78 µs

RecPFor

Cont. Steal (greedy) 5.94 s 229154 6.5 µs 1790018 20.4 µs 3186116 1139 bytes 3.37 µs
Cont. Steal (stalling) 5.97 s 279035 4852.7 µs 3086034 20.6 µs 4349765 1156 bytes 3.42 µs
Child Steal (Full) 7.69 s 8602558 6309.9 µs 15704498 19.9 µs 62509110 55 bytes 2.90 µs
Child Steal (RtC) 27.71 s 205358008 88.9 µs 223562173 19.2 µs 8164463070 56 bytes 2.98 µs

number of busy workers has many “valleys” in the latter half
of the execution. Simultaneously, there were a large number
of outstanding joins, which means that runnable tasks were
not being executed despite some workers being idle because
of a nongreedy schedule.

Finally, we analyze steal latency. TABLE II shows that con-
tinuation stealing had two orders of magnitude larger “stolen
task sizes” than child stealing because of stack migration.
Therefore, continuation stealing incurs a longer “task copy
time,” but the times are of the same order of magnitude. Note
that child stealing (RtC) in RecPFor on ITO-A incurred much
longer latency because of the greater number of steal attempts,
whereas latency on WISTERIA-O was less affected. Overall,
we found that the increased average steal latency (successful)
with continuation stealing was less than 20% compared with
that for child stealing for all cases in Fig. 6. Summarizing,
despite a small increase in steal latency, continuation stealing
can outperform child stealing by efficiently resolving joins.

C. Unbalanced Tree Search (UTS)

The UTS benchmark [18] has been used for measuring the
load balancing capability of parallel runtime systems in many
studies [11], [12], [13], [14], [51], [52], [53], [21], [22], [16],
[17]. Most existing implementations on distributed memory
are based on a BoT, in which task dependency cannot be
described. We found that the scalability of our runtime system
was comparable to or even better than that of existing state-
of-the-art UTS implementations.

The task of UTS is to count the total number of nodes in an
unbalanced tree, which is generated on the fly using a random
hash (SHA-1). The identical tree is generated deterministically
if the same seed and parameters are given. A natural way to
count the number of nodes would be depth-first tree traversal,
and the recursive fork-join constructs in MassiveThreads/DM
can straightforwardly parallelize the tree traversal.

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

0

10k

20k

30k

40k

50k

0
200
400
600

Time (s)

of

 B
us

y
W

or
ke

rs

of

 O
ut

st
an

di
ng

 Jo
in

s

of outstanding joins

(a) Child Stealing (Full)

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

0

10k

20k

30k

40k

50k

0

10

20

Time (s)

of

 B
us

y
W

or
ke

rs

of

 O
ut

st
an

di
ng

 Jo
in

s

(b) Continuation Stealing (greedy join)

Fig. 7. Time series of scheduler activities in RecPFor benchmark (N = 222)
on ITO-A with 576 cores (16 nodes). Filled (green) area represents number
of busy workers (left y-axis); line (purple) plot represents number of ready-to-
execute outstanding joins (right y-axis). Numbers of outstanding joins between
1 s and 5 s are zoomed in and plotted as an overlay on the main chart.

We compared the performance of MassiveThreads/DM
with three existing distributed work-stealing implementations:
SAWS [12], Charm++ [19], [20], and X10/GLB [21], [22].
SAWS is a state-of-the-art RDMA-based work-stealing library
(see Section VI). We used the author-provided implementation
of SAWS and UTS [54] with the OpenSHMEM implemen-
tation build together with Open MPI in our environment
(TABLE I). We compiled Charm++ v7.0.0 with the MPI
backend and the ParSSSE [53] implementation of UTS in-
cluded in the official repository, with work stealing enabled
(-module workstealing option). We built X10 [55] with
the MPI backend and the GLB-UTS benchmark [56] using the
compiler with the C++ backend (x10c++). We modified all
of their UTS implementations to run multiple times to execute

100 1K 10K

100M

1G

10G

100G Ours (T1WL)

Ours (T1XXL)

Ours (T1L)

of processes

Th
ro

ug
hp

ut
 (n

od
es

/s
)

(a) MassiveThreads/DM (ours)

100 1K 10K

100M

1G

10G

100G SAWS (T1WL)

SAWS (T1XXL)

SAWS (T1L)

of processes

Th
ro

ug
hp

ut
 (n

od
es

/s
)

(b) SAWS

100 1K 10K

1M

10M

100M

1G

10G

100G

Charm++ (T1WL)

Charm++ (T1XXL)

Charm++ (T1L)

of processes

Th
ro

ug
hp

ut
 (n

od
es

/s
)

(c) Charm++

100 1K 10K

100M

1G

10G

100G X10 (T1WL)

X10 (T1XXL)

X10 (T1L)

of processes

Th
ro

ug
hp

ut
 (n

od
es

/s
)

(d) X10/GLB

Fig. 8. Throughput of UTS benchmark on ITO-A (up to 9212 cores).

the same number of warm-up runs. The implementations were
based on a BoT2, which relies on global termination detection
and collective communication to gather the node counts at the
end of execution.

For evaluation, we used three sizes of the geometric tree
(T1L < T1XXL < T1WL). The primary performance met-
ric was throughput, which was calculated in terms of the
number of nodes visited per second (nodes/s). The execution
time of the serial depth-first search with T1L was 19.4 s
(5.27 Mnodes/s) on ITO-A and 65.9 s (1.55 Mnodes/s)
on WISTERIA-O. Note that MassiveThreads/DM adds serial
overheads of only 18% on ITO-A and 27% on WISTERIA-O
to the serial depth-first execution.

Fig. 8 shows the scalability of the four UTS implementa-
tions on ITO-A. The dotted straight line represents the ideal
throughput calculated using the throughput of a serial depth-
first search. Although the throughput of X10/GLB exceeded
the ideal because the UTS implementation of X10/GLB is
highly optimized from the original, we do not delve deeper
into its serial performance because scalability is our primary
interest. We can see that Charm++ did not scale to large core
counts and that X10/GLB failed to exhibit strong scaling for
small trees. We consider that these performance problems were
due to the message-based (two-sided) work-stealing imple-
mentation in Charm++ and X10/GLB. In contrast, the RDMA-
based (one-sided) implementations, MassiveThreads/DM and
SAWS, exhibited good scalability even for relatively small
trees. Note that the UTS implementation of SAWS was based
on a BoT, which is a more restrictive form of parallelism
than the nested fork-join in MassiveThreads/DM. These results
indicate that continuation stealing (thread migration) and task
dependencies (join) are not performance-limiting factors in
implementing distributed task-parallel runtime systems.

Fig. 9 shows the scalability of MassiveThreads/DM on
WISTERIA-O, for which the trend is similar to that on ITO-A.
We did not run other runtime systems on WISTERIA-O
because of porting issues. Notably, for T1WL on 110,592
cores, it achieved 96.4% parallel efficiency calculated with
a single-core execution time.

2Although the UTS implementation of Charm++ is based on a BoT,
Charm++ itself has more synchronization capability than a BoT.

100 1K 10K 100K

100M

1G

10G

100G

Ours (T1WL)

Ours (T1XXL)

Ours (T1L)

of processes

Th
ro

ug
hp

ut
 (n

od
es

/s
)

Fig. 9. Throughput of UTS with Mas-
siveThreads/DM on WISTERIA-O.

X00 X01

X10 X11

L00 L01

L10 L11

T00 T01

T10 T11

L

Tt

l

b

r

At leaf

Fig. 10. Task dependency of LCS.

D. Longest Common Subsequence (LCS)

To examine scheduler performance when futures were inten-
sively used, we developed the LCS benchmark. The LCS prob-
lem for two sequences A = ⟨a1, ..., an⟩ and B = ⟨b1, ..., bn⟩
is defined by the following recurrence:

X(i, j) =


0 (i = 0 ∨ j = 0)

X(i− 1, j − 1) (i, j > 0 ∧ ai = bj)

max{X(i, j − 1), X(i− 1, j)} (i, j > 0 ∧ ai ̸= bj)

X(n, n) is the length of the LCS for A and B. Although a
naive algorithm would require O(n2) space for computing the
LCS, linear space algorithms with O(n) space are known [57],
[58]. In this evaluation, following the problem setting in [59],
[60], we solved only for the length of an LCS. LCS com-
putation can be naturally parallelized by divide-and-conquer
and has good cache locality, but a naive divide-and-conquer
approach lengthens the critical path from O(n) to O(nlog2 3),
which severely degrades parallelism [57], [58]. This is because
strict fork-join programs add artificial dependencies to the
original wavefront dependency pattern. Although our approach
is also based on recursive decomposition of 2D space similar
to the naive divide-and-conquer approach, the use of futures
resolves the critical path length problem.

Fig. 10 illustrates the recursive 2D decomposition and task
dependencies between the blocks; the notations correspond to
those used in the algorithm in Fig. 11, which is based on the
sequential algorithm by Chowdhury and Ramachandran [58].
Futures are dynamically created at each recursion and form

54 Function LCS(i, j, T, L, n)
55 if n ≤ C then
56 (t,)← T.join(), (, l)← L.join()
57 (b, r)← LCS SEQ(i, j, t, l, n)
58 return (b, r)
59 else
60 (, T10, T11)← T.join(), (L01, , L11)← L.join()
61 X00 ← spawn LCS(i , j , T10 , L01 , n/2)
62 X01 ← spawn LCS(i , j + n/2, T11 , X00 , n/2)
63 X10 ← spawn LCS(i+ n/2, j ,X00 , L11 , n/2)
64 X11 ← spawn LCS(i+ n/2, j + n/2, X01 , X10 , n/2)
65 X00.join()
66 return (X01, X10, X11)

Fig. 11. Algorithm for LCS based on recursive decomposition and futures.

TABLE III
EXECUTION TIMES OF LCS ON ITO-A WITH 576 CORES (16 NODES).

Size Cont. Steal (greedy) Cont. Steal (stalling) Child Stealing (Full)

218 0.569 s 3.44 s 93.1 s
222 45.9 s 433 s 2.11 ×104 s

a tree-like structure in which each node is a future. Each
intermediate node has three child futures (X01, X10, X11), and
each leaf has the values at the boundaries (b, r) to be passed to
the successive computations. The LCS function receives two
futures, T and L, which are geometrically at the top and left
of the current block. At an intermediate level, we first join
them (line 60) and the returned child futures (T10, T11, L01,
L11) are then passed to the child computations (lines 61–64),
following the dependency pattern illustrated in Fig. 10. X00

is joined at line 65 to avoid creating an excessive number of
futures. When problem size n is sufficiently small (n < C),
the algorithm sequentially computes the values at the output
boundaries (b and r) using the values at the input boundaries
(t and l), which are acquired by joining the futures (T and L).

We experimentally implemented futures that allow for mul-
tiple consumers in our runtime system. A limitation is that we
must set a fixed number of consumers when spawning a future,
but it suffices for LCS because the number of consumers is
known in advance. When a future is completed and it finds
multiple futures waiting for its completion, it immediately
resumes one of them and pushes the others into the local task
queue. For evaluation, we set C = 512 and used random input
sequences of 1-byte characters.

TABLE III compares the performance of the LCS bench-
mark with different scheduling policies on ITO-A with 16
nodes. Continuation stealing with greedy join achieved the
best performance; it was an order of magnitude faster than
continuation stealing with stalling join and two orders of
magnitude faster than child stealing. Stalling join is much
slower than greedy join because the lack of thread migration
at joins led to a larger load imbalance. In particular, execution
delay of futures near the root was the bottleneck. In child
stealing, we found that almost all tasks were executed by the

10 100 1K 10K

1

10

100

1,000

of processes

Ex
ec

ut
io

n
ti

m
e

(s
)

(a) ITO-A

10 100 1K 10K 100K

1

10

100

1,000

of processes

Ex
ec

ut
io

n
ti

m
e

(s
)

(b) WISTERIA-O

Fig. 12. Execution times of LCS with continuation stealing (greedy join). The
filled area enclosed by lines represent max(T1/P, T∞) ≤ TP ≤ T1/P +
T∞ (lower bound and upper bound of the ideal, greedy-scheduling theorem)
for each problem size.

main worker because tied tasks were never migrated3.
Next, we validate the performance of continuation stealing

(greedy join) by comparing it against the theoretical ideal
performance. Fig. 12 shows the experimental results. The filled
area for each N is enclosed by the lines representing the
lower bound TP ≥ max(T1/P, T∞) and the upper bound
of the greedy-scheduling theorem TP ≤ T1/P + T∞ (see
Section II-A). Note that the greedy-scheduling theorem as-
sumes an ideal greedy scheduler with no run-time overhead;
the performance of real-world schedulers can be out of this
bound. Suppose that the execution time for each leaf block is
Tc, the work and span can be calculated as T1 = (N/C)2Tc

and T∞ = (2N/C − 1)Tc. The value of Tc was 0.340 ms for
ITO-A and 0.872 ms for WISTERIA-O, which was measured
by serial execution for N = 216. The results show that most of
the parallel execution times were within these bounds, which
suggests that almost no tasks were unnecessarily blocked by
the scheduler of continuation stealing (greedy join). Despite
a few exceptions, continuation stealing successfully scaled to
9,126 cores on ITO-A and 27,648 cores on WISTERIA-O. We
could not see any performance improvements on WISTERIA-O
with 110,592 cores, which needs further performance investi-
gation. More sophisticated scheduling policies for futures [61]
might help to further improve performance, but this is beyond
the scope of this paper.

VI. RELATED WORK

Child stealing on distributed memory has been intensively
studied. Dinan et al. [11] implemented RDMA-based work
stealing in the Scioto infrastructure [31] with an efficient
implementation of the steal-half queue [62]. Structured Atomic
Work Stealing (SAWS) [12] further improved the queue imple-
mentation by utilizing RDMA atomic operations. The global
load balancing (GLB) library [21], [22] was developed for
the X10 language using lifeline-based work stealing [14].
The above systems are all based on a BoT, in which task
dependencies cannot be described.

3Load balancing did not work in child stealing. Most tasks were popped
from the queue and suspended immediately before being stolen, because steal
operations are much slower than local pop and suspend operations.

Satin [32] and HotSLAW [13] support fork-join parallelism
with RtC threads, so they are subject to the “buried join”
problem [25] explained in Section IV-B. Grappa [34] also
uses RtC threads, but it mitigates the buried join problem by
creating many user-level workers (rather than threads) as Full
threads to oversubscribe cores. This approach is essentially
similar to that of our child stealing implementation with Full
threads tied to each core. KAAPI [33] uses an approach
similar to that of Grappa by using kernel-level threads. These
implementations are tied-tasks; i.e., once a task begins, it
cannot be migrated to other nodes.

Compared with child stealing, continuation stealing are
rarely implemented on distributed memory. Distributed
Cilk [63] and Tascell [64] support continuation stealing but
they require special compiler support. Charm++ [19], [20] and
Adaptive MPI [36] support thread migration on distributed
memory based on the iso-address scheme [35], but they are
not designed for RDMA. MassiveThreads/DM (uni-address
threads) [16], [17] is the only library that supports RDMA-
based continuation stealing (as explained in Section II-D).

Many researchers have investigated topology-aware work
stealing to reduce the number of remote work-stealing re-
quests [15], [51], [52], [65], [66], [67], but they basically as-
sumed two-sided communication. Although these approaches
could be used in conjugation with RDMA-based work stealing,
their benefits have not been well studied in the context of
RDMA, which is our future interest.

Performance comparison between child and continuation
stealing on shared memory has also been conducted [68], [69],
[27], and the tradeoffs between them have been reported. They
found that, roughly speaking, child stealing is preferable for
shallow parallel loops in which a parent task creates many
child tasks, whereas continuation stealing is preferable for
deeply nested parallelism, which is consistent with our results.

VII. CONCLUSION

We have demonstrated that distributed continuation stealing
can scale to as many as 110,592 cores. In-depth analysis
revealed that, even though continuation stealing incurred a
slightly longer steal latency (less than 20% overhead), it
achieved better overall performance than child stealing in
several benchmarks by resolving task join primitives more
efficiently. Particularly when the synchronization pattern is
complicated (e.g., futures in LCS), the performance penalty
due to the lack of thread migration was substantial.

To focus on the scheduler performance, we did not include
applications that use global memory in this paper; data are
only exchanged via arguments or return values of tasks.
Nevertheless, global heaps are essential for writing more
practical applications. Efficient support for global heaps, such
as Partitioned Global Address Space (PGAS) or Distributed
Shared Memory (DSM), remains for future work.

Our distributed continuation-stealing runtime system is im-
plemented as a C++ library that can be compiled with ordi-
nary C++ compilers and MPI-3 RMA. The source code and

scripts for experiments in this paper are publicly available at
https://github.com/s417-lama/cluster22-contsteal-artifact.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber 21J22305. This paper is based on results obtained from a
project, JPNP16007, commissioned by the New Energy and
Industrial Technology Development Organization (NEDO).
The computation was carried out using the computer re-
source offered under the category of General Projects by Re-
search Institute for Information Technology, Kyushu Univer-
sity, and the FUJITSU Supercomputer PRIMEHPC FX1000
(Wisteria/BDEC-01 Odyssey) at the Information Technology
Center, The University of Tokyo.

REFERENCES

[1] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime system,”
Journal of Parallel and Distributed Computing, vol. 37, no. 1, pp. 55–69,
Aug. 1996.

[2] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation
of the Cilk-5 multithreaded language,” in Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, ser. PLDI ’98, 1998, pp. 212–223.

[3] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for Multi-
Core Processor Parallelism. O’Reilly Media, July 2007.

[4] OpenMP Architecture Review Board, “OpenMP Application Program
Interface Version 5.0,” Nov. 2018. [Online]. Available: https://www.
openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

[5] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, and J. Planas, “OmpSs: A proposal for programming hetero-
geneous multi-core architectures,” Parallel Processing Letters, vol. 21,
no. 02, pp. 173–193, Mar. 2011.

[6] K. B. Wheeler, R. C. Murphy, and D. Thain, “Qthreads: An API for
programming with millions of lightweight threads,” in Proceedings
of the 22nd IEEE International Parallel and Distributed Processing
Symposium, ser. IPDPS ’08, 2008.

[7] J. Nakashima and K. Taura, “MassiveThreads: A thread library for high
productivity languages,” Concurrent Objects and Beyond, vol. 8665, pp.
222–238, Jan. 2014.

[8] S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks, P. Carns,
A. Castelló, D. Genet, T. Herault, S. Iwasaki, P. Jindal, L. V. Kalé,
S. Krishnamoorthy, J. Lifflander, H. Lu, E. Meneses, M. Snir, Y. Sun,
K. Taura, and P. Beckman, “Argobots: A lightweight low-level threading
and tasking framework,” IEEE Transactions on Parallel and Distributed
Systems, vol. 29, no. 3, pp. 512–526, Oct. 2017.

[9] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded com-
putations by work stealing,” Journal of the ACM, vol. 46, no. 5, pp.
720–748, Sept. 1999.

[10] U. A. Acar, G. E. Blelloch, and R. D. Blumofe, “The data locality of
work stealing,” in Proceedings of the Twelfth Annual ACM Symposium
on Parallel Algorithms and Architectures, ser. SPAA ’00, July 2000, pp.
1–12.

[11] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and
J. Nieplocha, “Scalable work stealing,” in Proceedings of the Inter-
national Conference for High Performance Computing, Networking,
Storage, and Analysis, ser. SC ’09, 2009, pp. 53:1–53:11.

[12] H. Cartier, J. Dinan, and D. B. Larkins, “Optimizing work stealing
communication with structured atomic operations,” in Proceedings of
the 50th International Conference on Parallel Processing, ser. ICPP ’21,
2021, pp. 36:1–36:10.

[13] S.-J. Min, C. Iancu, and K. Yelick, “Hierarchical work stealing on many-
core clusters,” in Proceedings of the Fifth Conference on Partitioned
Global Address Space Programming Models, ser. PGAS ’11, 2011, pp.
1–10.

[14] V. A. Saraswat, P. Kambadur, S. Kodali, D. Grove, and S. Krish-
namoorthy, “Lifeline-based global load balancing,” in Proceedings of the
16th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’11, 2011, pp. 201–212.

https://github.com/s417-lama/cluster22-contsteal-artifact
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

[15] J. Paudel, O. Tardieu, and J. N. Amaral, “On the merits of distributed
work-stealing on selective locality-aware tasks,” in Proceedings of the
42nd International Conference on Parallel Processing, ser. ICPP ’13,
2013, pp. 100–109.

[16] S. Akiyama and K. Taura, “Uni-address threads: Scalable thread man-
agement for RDMA-based work stealing,” in Proceedings of the 24th
International Symposium on High-Performance Parallel and Distributed
Computing, ser. HPDC ’15, 2015, pp. 15–26.

[17] ——, “Scalable work stealing of native threads on an x86-64 InfiniBand
cluster,” Journal of Information Processing, vol. 24, no. 3, pp. 583–596,
May 2016.

[18] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan, and C.-W.
Tseng, “UTS: An unbalanced tree search benchmark,” in Proceedings
of the 19th International Conference on Languages and Compilers for
Parallel Computing, ser. LCPC ’06, 2006, pp. 235–250.

[19] L. Kale, B. Acun, S. Bak, A. Becker, M. Bhandarkar, N. Bhat,
A. Bhatele, E. Bohm, C. Bordage, R. Brunner, R. Buch, S. Chakravorty,
K. Chandrasekar, J. Choi, M. Denardo, J. DeSouza, M. Diener,
H. Dokania, I. Dooley, W. Fenton, J. Galvez, F. Gioachin, A. Gupta,
G. Gupta, M. Gupta, A. Gursoy, V. Harsh, F. Hu, C. Huang,
N. Jagathesan, N. Jain, P. Jetley, P. Jindal, R. Kanakagiri, G. Koenig,
S. Krishnan, S. Kumar, D. Kunzman, M. Lang, A. Langer, O. Lawlor,
C. Wai Lee, J. Lifflander, K. Mahesh, C. Mendes, H. Menon, C. Mei,
E. Meneses, E. Mikida, P. Miller, R. Mokos, V. Narayanan, X. Ni,
K. Nomura, S. Paranjpye, P. Ramachandran, B. Ramkumar, E. Ramos,
M. Robson, N. Saboo, V. Saletore, O. Sarood, K. Senthil, N. Shah,
W. Shu, A. B. Sinha, Y. Sun, Z. Sura, E. Totoni, K. Varadarajan,
R. Venkataraman, J. Wang, L. Wesolowski, S. White, T. Wilmarth,
J. Wright, J. Yelon, and G. Zheng, “The Charm++ Parallel Programming
System,” Aug 2019. [Online]. Available: https://charm.cs.illinois.edu

[20] L. V. Kale and G. Zheng, “Chapter 1: The Charm++ Program-
ming Model,” in Parallel Science and Engineering Applications: The
Charm++ Approach, 1st ed., L. V. Kale and A. Bhatele, Eds. Boca
Raton, FL, USA: CRC Press, Inc., 2013, ch. 1, pp. 1–16.

[21] W. Zhang, O. Tardieu, D. Grove, B. Herta, T. Kamada, V. Saraswat,
and M. Takeuchi, “GLB: Lifeline-based global load balancing library in
X10,” in Proceedings of the First Workshop on Parallel Programming
for Analytics Applications, ser. PPAA ’14, 2014, pp. 31–40.

[22] O. Tardieu, B. Herta, D. Cunningham, D. Grove, P. Kambadur,
V. Saraswat, A. Shinnar, M. Takeuchi, and M. Vaziri, “X10 and APGAS
at petascale,” in Proceedings of the 19th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP ’14, pp.
53–66.

[23] D. B. Wagner and B. G. Calder, “Leapfrogging: A portable technique for
implementing efficient futures,” in Proceedings of the Fourth ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
ser. PPOPP ’93, 1993, pp. 208–217.

[24] D. Lea, “A Java fork/join framework,” in Proceedings of the ACM 2000
conference on Java Grande, ser. JAVA ’00, 2000, pp. 36–43.

[25] K.-F. Faxén, “Efficient work stealing for fine grained parallelism,” in
Proceedings of the 39th International Conference on Parallel Process-
ing, ser. ICPP ’10, 2010, pp. 313–322.

[26] E. Mohr, D. A. Kranz, and R. H. Halstead, “Lazy task creation:
A technique for increasing the granularity of parallel programs,” in
Proceedings of the 1990 ACM Conference on LISP and Functional
Programming, ser. LFP ’90, 1990, pp. 185–197.

[27] S. Iwasaki, A. Amer, K. Taura, and P. Balaji, “Analyzing the performance
trade-off in implementing user-level threads,” IEEE Transactions on
Parallel and Distributed Systems, vol. 31, no. 8, pp. 1859–1877, Feb
2020.

[28] R. P. Brent, “The parallel evaluation of general arithmetic expressions,”
Journal of the ACM, vol. 21, no. 2, pp. 201–206, Apr. 1974.

[29] S. Iwasaki, A. Amer, K. Taura, and P. Balaji, “Lessons learned from
analyzing dynamic promotion for user-level threading,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage, and Analysis, ser. SC ’18, 2018, pp. 23:1–23:12.

[30] S. Shiina, S. Iwasaki, K. Taura, and P. Balaji, “Lightweight preemptive
user-level threads,” in Proceedings of the 26th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, ser. PPoPP
’21, 2021.

[31] J. Dinan, S. Krishnamoorthy, D. B. Larkins, J. Nieplocha, and P. Sa-
dayappan, “Scioto: A framework for global-view task parallelism,” in
Proceedings of the 37th International Conference on Parallel Process-
ing, ser. ICPP ’08, 2008, pp. 586–593.

[32] R. V. Van Nieuwpoort, G. Wrzesińska, C. J. H. Jacobs, and H. E.
Bal, “Satin: A high-level and efficient grid programming model,” ACM
Transactions on Programming Languages and Systems, vol. 32, no. 3,
pp. 9:1–9:39, Mar. 2010.

[33] T. Gautier, X. Besseron, and L. Pigeon, “KAAPI: A thread schedul-
ing runtime system for data flow computations on cluster of multi-
processors,” in Proceedings of the 2007 International Workshop on
Parallel Symbolic Computation, ser. PASCO ’07, 2007, pp. 15–23.

[34] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and
M. Oskin, “Latency-tolerant software distributed shared memory,” in
Proceedings of the 2015 USENIX Annual Technical Conference, ser.
USENIX ATC ’15, 2015, pp. 291–305.

[35] G. Antoniu, L. Bougé, and R. Namyst, “An efficient and transparent
thread migration scheme in the PM2 runtime system,” in Proceedings
of the 11th IPPS/SPDP’99 Workshops Held in Conjunction with the 13th
International Parallel Processing Symposium and 10th Symposium on
Parallel and Distributed Processing, ser. RTSPP ’99, 1999, pp. 496–510.

[36] C. Huang, O. Lawlor, and L. V. Kalé, “Adaptive MPI,” in Proceedings
of the 16th International Conference on Languages and Compilers for
Parallel Computing, ser. LCPC ’03, 2003, pp. 306–322.

[37] A. Robison, “A primer on scheduling fork-join parallelism with work
stealing,” ISO/IEC JTC1/SC22/WG21 - The C++ Standards Committee,
Tech. Rep. N3872, 2014.

[38] G. E. Blelloch, P. B. Gibbons, and Y. Matias, “Provably efficient
scheduling for languages with fine-grained parallelism,” Journal of the
ACM, vol. 46, no. 2, pp. 281–321, March 1999.

[39] F. Schmaus, N. Pfeiffer, W. Schröder-Preikschat, T. Hönig, and J. Nolte,
“Nowa: A wait-free continuation-stealing concurrency platform,” in
Proceedings of the 36th IEEE International Parallel and Distributed
Processing Symposium, ser. IPDPS ’21, 2021.

[40] G. E. Blelloch and M. Reid-Miller, “Pipelining with futures,” Theory of
Computing Systems, vol. 32, no. 3, pp. 213–239, June 1999.

[41] D. Spoonhower, G. E. Blelloch, P. B. Gibbons, and R. Harper, “Beyond
nested parallelism: Tight bounds on work-stealing overheads for parallel
futures,” in Proceedings of the Twenty-First Annual Symposium on
Parallelism in Algorithms and Architectures, ser. SPAA ’09, 2009, pp.
91–100.

[42] T. Hoefler, J. Dinan, R. Thakur, B. Barrett, P. Balaji, W. Gropp, and
K. Underwood, “Remote memory access programming in MPI-3,” ACM
Transactions on Parallel Computing, vol. 2, no. 2, pp. 1–26, July 2015.

[43] K. University, “Introduction of ITO,” 2017. [Online]. Available:
https://www.cc.kyushu-u.ac.jp/scp/eng/system/ITO/01 intro.html

[44] T. U. of Tokyo, “Introduction to the Wisteria/BDEC-01,” 2021.
[Online]. Available: https://www.cc.u-tokyo.ac.jp/en/supercomputer/
wisteria/system.php

[45] M. Sato, Y. Ishikawa, H. Tomita, Y. Kodama, T. Odajima, M. Tsuji,
H. Yashiro, M. Aoki, N. Shida, I. Miyoshi, K. Hirai, A. Furuya,
A. Asato, K. Morita, and T. Shimizu, “Co-design for A64FX manycore
processor and “Fugaku”,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’20, 2020, pp. 47:1–47:15.

[46] P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker, O. Hernandez,
Y. Itigin, M. Dubman, G. Shainer, R. L. Graham, L. Liss, Y. Shahar,
S. Potluri, D. Rossetti, D. Becker, D. Poole, C. Lamb, S. Kumar,
C. Stunkel, G. Bosilca, and A. Bouteiller, “UCX: An open source
framework for HPC network APIs and beyond,” in Proceedings of the
2015 IEEE 23rd Annual Symposium on High-Performance Interconnects,
ser. HOTI ’15, 2015, pp. 40–43.

[47] J. Schuchart, A. Bouteiller, and G. Bosilca, “Using MPI-3 RMA for
active messages,” in Proceedings of the 2019 IEEE/ACM Workshop on
Exascale MPI, ser. ExaMPI ’19, 2019, pp. 47–56.

[48] C. E. Leiserson, “The Cilk++ concurrency platform,” The Journal of
Supercomputing, vol. 51, no. 3, pp. 244–257, Mar. 2010.

[49] G. J. Narlikar, “A parallel, multithreaded decision tree builder,” Carnegie
Mellon University, Tech. Rep. CMU-CS-98-184, Dec. 1998.

[50] A. Huynh and K. Taura, “Delay Spotter: A tool for spotting scheduler-
caused delays in task parallel runtime systems,” in Proceedings of
the 2017 IEEE International Conference on Cluster Computing, ser.
CLUSTER ’17, 2017, pp. 114–125.

[51] S. Perarnau and M. Sato, “Victim selection and distributed work stealing
performance: A case study,” in Proceedings of the 28th IEEE Interna-
tional Parallel and Distributed Processing Symposium, ser. IPDPS ’14,
2014, pp. 659–668.

https://charm.cs.illinois.edu
https://www.cc.kyushu-u.ac.jp/scp/eng/system/ITO/01_intro.html
https://www.cc.u-tokyo.ac.jp/en/supercomputer/wisteria/system.php
https://www.cc.u-tokyo.ac.jp/en/supercomputer/wisteria/system.php

[52] H. Parikh, V. Deodhar, A. Gavrilovska, and S. Pande, “Distributed work
stealing at scale via matchmaking,” in Proceedings of the 2021 IEEE
International Conference on Cluster Computing, ser. CLUSTER ’21,
2021, pp. 250–260.

[53] Y. Sun, G. Zheng, P. Jetley, and L. V. Kalé, “ParSSSE: An adaptive
parallel state space search engine,” Parallel Processing Letters, vol. 21,
no. 03, pp. 319–338, 2011.

[54] D. B. Larkins, “saws (GitHub repository),” Oct. 2021, commit hash:
cdd36782c971. [Online]. Available: https://github.com/brianlarkins/
saws

[55] IBM Corporation, “X10 (GitHub repository),” Feb. 2020, commit hash:
5412ae0a0db1. [Online]. Available: https://github.com/x10-lang/x10

[56] ——, “X10 benchmarks (GitHub repository),” Feb. 2020, commit hash:
2d6a59614ad9. [Online]. Available: https://github.com/x10-lang/
x10-benchmarks

[57] D. S. Hirschberg, “A linear space algorithm for computing maximal
common subsequences,” Commun. ACM, vol. 18, no. 6, pp. 341–343,
June 1975.

[58] R. A. Chowdhury and V. Ramachandran, “Cache-oblivious dynamic
programming,” in Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithm, ser. SODA ’06, 2006, pp. 591–600.

[59] Y. Tang, R. You, H. Kan, J. J. Tithi, P. Ganapathi, and R. A. Chowd-
hury, “Cache-oblivious wavefront: Improving parallelism of recursive
dynamic programming algorithms without losing cache-efficiency,” in
Proceedings of the 20th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, ser. PPoPP ’15, 2015, pp. 205–214.

[60] R. Chowdhury, P. Ganapathi, Y. Tang, and J. J. Tithi, “Provably efficient
scheduling of cache-oblivious wavefront algorithms,” in Proceedings of
the 29th ACM Symposium on Parallelism in Algorithms and Architec-
tures, ser. SPAA ’17, 2017, pp. 339–350.

[61] K. Singer, Y. Xu, and I.-T. A. Lee, “Proactive work stealing for futures,”
in Proceedings of the 24th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, ser. PPoPP ’19, 2019, pp. 257–271.

[62] D. Hendler and N. Shavit, “Non-blocking steal-half work queues,” in
Proceedings of the Twenty-First Annual Symposium on Principles of
Distributed Computing, ser. PODC ’02, 2002, pp. 280–289.

[63] K. H. Randall, “Cilk: Efficient multithreaded computing,” Ph.D. dis-
sertation, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, May 1998.

[64] T. Hiraishi, M. Yasugi, S. Umatani, and T. Yuasa, “Backtracking-based
load balancing,” in Proceedings of the 14th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, ser. PPoPP ’09,
2009, pp. 55–64.

[65] T.-T. Vu and B. Derbel, “Link-heterogeneous work stealing,” in Pro-
ceedings of the 14th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, ser. CCGrid ’14, 2014, pp. 354–363.

[66] R. Nakashima, H. Yoritaka, M. Yasugi, T. Hiraishi, and S. Umatani,
“Extending a work-stealing framework with priorities and weights,”
in Proceedings of the 2019 IEEE/ACM 9th Workshop on Irregular
Applications: Architectures and Algorithms, ser. IA3 ’19, 2019, pp. 9–
16.

[67] J.-N. Quintin and F. Wagner, “Hierarchical work-stealing,” in Proceed-
ings of the 16th European Conference on Parallel Processing, ser. Euro-
Par ’10, 2010, pp. 217–229.

[68] Y. Guo, R. Barik, R. Raman, and V. Sarkar, “Work-first and help-first
scheduling policies for async-finish task parallelism,” in Proceedings
of the 23rd IEEE International Symposium on Parallel and Distributed
Processing Symposium, ser. IPDPS ’09, 2009.

[69] Y. Guo, J. Zhao, V. Cave, and V. Sarkar, “SLAW: A scalable locality-
aware adaptive work-stealing scheduler,” in Proceedings of the 24th
IEEE International Symposium on Parallel and Distributed Processing
Symposium, ser. IPDPS ’10, 2010.

https://github.com/brianlarkins/saws
https://github.com/brianlarkins/saws
https://github.com/x10-lang/x10
https://github.com/x10-lang/x10-benchmarks
https://github.com/x10-lang/x10-benchmarks

	Introduction
	Work Stealing
	Child Stealing and Continuation Stealing
	Handling Task Synchronization (Join)
	Suspending and Migrating Threads
	Uni-Address Threads

	Joining Threads over RDMA
	Joining Strategy
	Stalling Join
	Greedy Join

	Freeing Remote Objects

	Evaluation Methodology
	Experimental Settings
	Implementations of Child Stealing
	Synthetic Benchmarks

	Performance Analysis and Evaluation
	Performance Analysis of Joining Strategies
	Child Stealing vs. Continuation Stealing
	Unbalanced Tree Search (UTS)
	Longest Common Subsequence (LCS)

	Related Work
	Conclusion
	Acknowledgment
	References

